Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).
Govinden, V. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023).
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
Tan, C. et al. Engineering polar vortex from topologically trivial domain architecture. Nat. Commun. 12, 4620 (2021).
Li, Z. W. et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3, e1700919 (2017).
Kim, K. et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).
Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 603, 1702375 (2017).
Prokhorenko, S. et al. Motion and teleportation of polar bubbles in low-dimensional ferroelectrics. Nat. Commun. 15, 412 (2024).
Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).
Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).
Bakaul, S. R. et al. Freestanding ferroelectric bubble domains. Adv. Mater. 33, 2105432 (2021).
Ming, W. et al. Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci. Adv. 8, eabq1232 (2022).
Lun, Y. et al. Ultralow tip-force driven sizable-area domain manipulation through transverse flexoelectricity. Adv. Mater. 35, 2302320 (2023).
Yang, X. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023).
Lu, D. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630, 340–345 (2024).
Liu, Y. et al. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Zhang, D. et al. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).
Wang, C. et al. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).
Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).
Dawei, Z. et al. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett. 21, 995–1002 (2021).
Jiang, X. et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 13, 574 (2022).
Zhong, Z. et al. Robust threshold-switching behavior assisted by Cu migration in a ferroionic CuInP2S6 heterostructure. ACS Nano 17, 12563–12572 (2023).
Zhu, H. et al. Highly tunable lateral homojunction formed in two-dimensional layered CuInP2S6 via in-plane ionic migration. ACS Nano 17, 1239–1246 (2023).
You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).
Qi, Y. et al. Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures. Phys. Rev. Lett. 126, 217601 (2021).
Deng, J. et al. Thickness-dependent in-plane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6. Small 16, 1904529 (2020).
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
Ding, B. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).
Zhang, Y. et al. Ferroelectric polarization-enhanced performance of flexible CuInP2S6 piezoelectric nanogenerator for biomechanical energy harvesting and voice recognition applications. Adv. Funct. Mater. 33, 2214745 (2023).
Olaniyan, I. et al. Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon. Nat. Commun. 15, 10047 (2024).
Lukyanchuk, I. et al. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).
Lukyanchuk, I. et al. Topological foundations of ferroelectricity. Phys. Rep. 1110, 1–56 (2025).
Tikhonov, Y. et al. Controllable skyrmion chirality in ferroelectrics. Sci. Rep. 10, 8657 (2020).
Govinden, V. et al. Stability of ferroelectric bubble domains. Phys. Rev. Mater. 7, L011401 (2023).
Steffes, J. J. et al. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc. Natl Acad. Sci. USA 116, 2413–2418 (2019).
Pereira Gonçalves, M. A. et al. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).
Lu, L. et al. Topological defects with distinct dipole configurations in PbTiO3/SrTiO3 multilayer films. Phys. Rev. Lett. 120, 177601 (2018).
Mizzi, C. A. et al. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).
Park, S. M. et al. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 13, 366–370 (2018).
Lin, S. Q. et al. Electron transfer driven by tip-induced flexoelectricity in contact electrification. J. Phys. D: Appl. Phys. 55, 315502 (2022).
Zhang, Y. X. et al. Strain manipulation of ferroelectric skyrmion bubbles in a freestanding PbTiO3 film: a phase field simulation. Phys. Rev. B 105, 224101 (2022).
Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).
Velický, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).
Kresse, G. et al. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 52, 1096–1114 (1995).
Wang, L. et al. Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020).
Zhang, C. et al. Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 materials. Acta Phys.-Chim. Sin. 35, 1128–1133 (2019).
Liang, C. B. et al. Measurement of the flexoelectric coefficients in van der Waals materials with separation of piezoelectricity. Smart Mater. Struct. 34, 025042 (2025).