Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Axe, J. D., Mason, R., Mitchell, E. W. J. & White, J. W. Incommensurate structures. Phil. Trans. R. Soc. Lond. B 290, 593–603 (1980).

Article 
CAS 

Google Scholar
 

de Wolff, P. M., Janssen, T. & Janner, A. The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Crystallogr. 37, 625–636 (1981).

Article 

Google Scholar
 

Peierls, R. Quantum Theory of Solids (Oxford University Press, 1955).

Grüner, G., Density Waves in Solids (CRC, 2018).

Zong, A. Emergent States in Photoinduced Charge-Density-Wave Transitions (Springer, 2021).

Pekker, D. & Varma, C. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

Article 
CAS 

Google Scholar
 

Wang, Y. et al. Axial Higgs mode detected by quantum pathway interference in RTe3. Nature 606, 896–901 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kim, S. et al. Observation of a massive phason in a charge-density-wave insulator. Nat. Mater. 22, 429–433 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Wu, C. et al. Tailoring Dirac fermions by in situ tunable high-order moiré pattern in graphene-monolayer xenon heterostructure. Phys. Rev. Lett. 129, 176402 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Hesp, N. C. H. et al. Cryogenic nano-imaging of second-order moiré superlattices. Nat. Mater. 23, 1664–1670 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Lv, B. et al. Unconventional hysteretic transition in a charge density wave. Phys. Rev. Lett. 128, 036401 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Banerjee, A. et al. Charge transfer and multiple density waves in the rare earth tellurides. Phys. Rev. B 87, 155131 (2013).

Article 

Google Scholar
 

DiCarlo, D., Thorne, R. E., Sweetland, E., Sutton, M. & Brock, J. D. Charge-density-wave structure in NbSe3. Phys. Rev. B 50, 8288 (1994).

Article 
CAS 

Google Scholar
 

Feng, Y. et al. Itinerant density wave instabilities at classical and quantum critical points. Nat. Phys. 11, 865–871 (2015).

Article 
CAS 

Google Scholar
 

Shin, K. et al. Observation of two separate charge density wave transitions in Gd2Te5 via transmission electron microscopy and high-resolution X-ray diffraction. J. Alloys Compd. 489, 332–335 (2010).

Article 
CAS 

Google Scholar
 

Ravy, S. et al. Disorder effects on the charge-density waves structure in V- and W-doped blue bronzes: Friedel oscillations and charge-density wave pinning. Phys. Rev. B 74, 174102 (2006).

Article 

Google Scholar
 

Yue, L. et al. Distinction between pristine and disorder-perturbed charge density waves in ZrTe3. Nat. Commun. 11, 98 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J. et al. Charge density wave with anomalous temperature dependence in UPt2Si2. Phys. Rev. B 102, 41112 (2020).

Article 
CAS 

Google Scholar
 

Fleming, R. M., DiSalvo, F. J., Cava, R. J. & Waszczak, J. V. Observation of charge-density waves in the cubic spinel structure CuV2S4. Physical Review B 24, 2850 (1981).

Article 
CAS 

Google Scholar
 

Fleming, R. M., Schneemeyer, L. F. & Moncton, D. E. Commensurate–incommensurate transition in the charge-density-wave state of K0.30 MoO3. Phys. Rev. B 31, 899 (1985).

Article 
CAS 

Google Scholar
 

Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

Article 
CAS 

Google Scholar
 

Wu, D. et al. Layered semiconductor EuTe4 with charge-density-wave order in square tellurium sheets. Phys. Rev. Mater. 3, 024002 (2019).

Article 
CAS 

Google Scholar
 

Zhang, Q. Q. et al. Thermal hysteretic behavior and negative magnetoresistance in the charge-density-wave material EuTe4. Phys. Rev. B 107, 115141 (2023).

Article 
CAS 

Google Scholar
 

Lv, B. et al. Coexistence of interacting charge density waves in a layered semiconductor. Phys. Rev. Lett. 132, 206401 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, Q. et al. Room-temperature non-volatile optical manipulation of polar order in a charge density wave. Nat. Commun. 15, 8937 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C. et al. Angle-resolved photoemission spectroscopy study of charge density wave order in the layered semiconductor EuTe4. Phys. Rev. B 106, L201108 (2022).

Article 
CAS 

Google Scholar
 

Pathak, A., Gupta, M. K., Mittal, R. & Bansal, D. Orbital- and atom-dependent linear dispersion across the Fermi level induces charge density wave instability in EuTe4. Phys. Rev. B 105, 035120 (2022).

Article 
CAS 

Google Scholar
 

Xiao, K. et al. Hidden charge order and multiple electronic instabilities in EuTe4. Nano Lett. 24, 7681 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Rathore, R. et al. Nonlocal probing of amplitude mode dynamics in charge-density-wave phase of EuTe4. Ultrafast Sci. 3, 0041 (2023).

Article 

Google Scholar
 

Messenger, G. C. & Ash, M. S. in The Effects of Radiation on Electronic Systems 1–42 (Springer, 1986).

Kudrawiec, R. et al. Correlations between the band structure, activation energies of electron traps, and photoluminescence in n-type GaNAs layers. Appl. Phys. Lett. 101, 082109 (2012).

Article 

Google Scholar
 

Yumigeta, K. et al. Advances in rare-earth tritelluride quantum materials: structure, properties, and synthesis. Adv. Sci. 8, 2004762 (2021).

Article 
CAS 

Google Scholar
 

Warren, B. E. X-ray Diffraction (Dover, 1990).

Rathore, R. et al. Evolution of static charge density wave order, amplitude mode dynamics, and suppression of Kohn anomalies at the hysteretic transition in EuTe4. Phys. Rev. B 107, 024101 (2023).

Article 
CAS 

Google Scholar
 

Overhauser, A. W. Observability of charge-density waves by neutron diffraction. Phys. Rev. B 3, 3173 (1971).

Article 

Google Scholar
 

Ru, N. et al. Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe3. Phys. Rev. B 77, 035114 (2008).

Article 

Google Scholar
 

Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

Article 
CAS 

Google Scholar
 

Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Mater. 2, 034010 (2015).

Article 

Google Scholar
 

Venturini, R. et al. Electrically driven non-volatile resistance switching between charge density wave states at room temperature. Preprint at https://arxiv.org/abs/2412.13094 (2024).

Li, R. et al. Moiré modulation of bulk electronic structures in CuxTiSe2-based mixed two- and three-dimensional heterostructures. Phys. Rev. B 110, 085148 (2024).

Article 
CAS 

Google Scholar
 

Halbertal, D. et al. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. X 13, 11026 (2023).

CAS 

Google Scholar
 

Nygren, K. E., Pagan, D. C., Ruff, J. P. C., Arenholz, E. & Brock, J. D. ‘Cartography’ in 7-dimensions at CHESS: mapping of structure in real space, reciprocal space, and time using high-energy X-rays. Synchrotr. Radiat. News 33, 11–16 (2020).

Article 

Google Scholar
 

Su, Y. Replication data for: large moiré superstructure of stacked incommensurate charge-density waves. Harvard Dataverse https://doi.org/10.7910/DVN/BVWZVL (2025).