Joo W, Yoshioka F, Funaki T, et al. Microsurgical anatomy of the trigeminal nerve. Clin Anat. 2014;27:61–88. https://doi.org/10.1002/ca.22330.
Kushnerev E, Yates JM. Evidence-based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review. J Oral Rehabil. 2015;42:786–802. https://doi.org/10.1111/joor.12313.
Jo H-J, Kim H-Y, Kang D-C, et al. A clinical study of inferior alveolar nerve damage caused by carnoy’s solution used as a complementary therapeutic agent in a cystic lesion. Maxillofac Plast Reconstr Surg. 2020;42:16. https://doi.org/10.1186/s40902-020-00257-4.
Kiyomoto M, Shirota T, Moriya T, et al. Experimental study on involvement of the central nervous system in inferior alveolar nerve damage-associated hyperalgesia of the mental region. J Oral Maxillofac Surg. 2018;76:2089.e1-2089.e8. https://doi.org/10.1016/j.joms.2018.06.021.
Ogut E, Yildirim FB, Sarikcioglu L, et al. Neuroprotective effects of Ozone therapy after sciatic nerve cut injury. Kurume Med J. 2020;65:137–44. https://doi.org/10.2739/kurumemedj.MS654002.
Pu JK-S, Wong SC-S, So KH-T, et al. Acupuncture as part of iatrogenic facial nerve palsy Rehabilitation-First report. World Neurosurg. 2020;140:e343–7. https://doi.org/10.1016/j.wneu.2020.05.079.
Sivaramakrishnan A, Solomon JM, Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury – A pilot randomized cross-over trial. J Spinal Cord Med. 2018;41:397–406. https://doi.org/10.1080/10790268.2017.1390930.
de Souza LG, Hendler KG, Marcolino AM, et al. Photobiomodulation promotes neural regeneration when compared to Simvastatin treatment in a sciatic nerve crush model. Lasers Med Sci. 2021;36:1591–7. https://doi.org/10.1007/s10103-020-03176-y.
Anders JJ, Arany PR, Baxter GD, Lanzafame RJ. Light-Emitting diode therapy and Low-Level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg. 2019;37:63–5. https://doi.org/10.1089/photob.2018.4600.
Anders JJ, Lanzafame RJ, Arany PR. Low-Level Light/Laser Therapy Versus Photobiomodulation Therapy. Photomed Laser Surg. 2015;33:183–4. https://doi.org/10.1089/pho.2015.9848.
Schwartz M, Solomon A, Lavie V, et al. Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res. 1991;545:334–8. https://doi.org/10.1016/0006-8993(91)91309-O.
Shen CC, Yang YC, Liu BS. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats. Injury. 2011;42:803–13. https://doi.org/10.1016/j.injury.2011.02.005.
Câmara CNDS, Brito MVH, Silveira EL, et al. Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats. Acta Cir Bras. 2011;26:12–8. https://doi.org/10.1590/S0102-86502011000100004.
Alcântara CC, Gigo-Benato D, Salvini TF, et al. Effect of Low-Level laser therapy (LLLT) on acute neural recovery and Inflammation-Related gene expression after crush injury in rat sciatic nerve. Lasers Surg Med. 2013;45:246–52. https://doi.org/10.1002/lsm.22129.
Yeh NG, Wu CH, Cheng TC. Light-emitting diodes—Their potential in biomedical applications. Renew Sustain Energy Rev. 2010;14:2161–6. https://doi.org/10.1016/J.RSER.2010.02.015.
Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl). 1968;9:621–6.
Chaves ME, de Araújo A, de Piancastelli AR, Pinotti ACC M. Effects of low-power light therapy on wound healing: LASER x LED. Bras Dermatol. 2014;89:616–23. https://doi.org/10.1590/abd1806-4841.20142519.
Enwemeka CS. The place of coherence in light induced tissue repair and pain modulation. Photomed Laser Surg. 2006;24:457–457. https://doi.org/10.1089/pho.2006.24.457.
Andraus RAC, Maia LP, de Souza Lino AD, et al. LLLT actives MMP-2 and increases muscle mechanical resistance after nerve sciatic rat regeneration. Lasers Med Sci. 2017;32:771–8. https://doi.org/10.1007/s10103-017-2169-y.
Wang C-Z, Chen Y-J, Wang Y-H, et al. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS ONE. 2014;9:e103348. https://doi.org/10.1371/journal.pone.0103348.
Murayama M, Sasaki K, Shibahara T. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations. Int J Oral Maxillofac Surg. 2015;44:1529–39. https://doi.org/10.1016/j.ijom.2015.09.004.
Kakegawa A, Yokouchi K, Itsubo T, et al. Correlation between motor function and axonal morphology in neonatally sciatic nerve-injured rats. Anat Sci Int. 2015;90:97–103. https://doi.org/10.1007/s12565-014-0236-z.
Öztürk K, Kuzu TE, Gürgan CA, et al. The effect of different treatment protocols with diode laser on regeneration in axonetmesis ınjuries of the ınferior alveolar nerve: an animal study. Lasers Med Sci. 2023;38:1–10. https://doi.org/10.1007/s10103-023-03834-x.
Diker N, Caglayan B, Helvacioglu F, Kilic E. The effect of systemic rifampicin treatment on inferior alveolar nerve regeneration in rats following crush injury. Eur J Oral Sci. 2020;128:183–9. https://doi.org/10.1111/eos.12691.
Yazicioglu D, Diker N, Helvacioglu F, Guz Y. Effects of 660 and 808nm low-level laser therapy on regeneration of inferior alveolar nerve after crush injury. Int J Oral Maxillofac Surg. 2015;44:e169–70. https://doi.org/10.1016/j.ijom.2015.08.881.
De Oliveira Martins D, Martinez Dos Santos F, De Evany M, et al. Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma. 2013;30:480–6. https://doi.org/10.1089/neu.2012.2603.
Kassab A, Hage M, Jabbur SJ, Chidiac JJ. Modified technique for the exposure of the inferior alveolar nerve in rats. J Pharmacol Toxicol Methods. 2013;67:182–6. https://doi.org/10.1016/j.vascn.2013.01.006.
Şen E, Özkan N, Önger ME, Kaplan S. Effects of NGF and photobiomodulation therapy on crush nerve injury and fracture healing: A Stereological and histopathological study in an animal model. Craniomaxillofac Trauma Reconstr. 2023;16:281–91. https://doi.org/10.1177/19433875221138175.
Takhtfooladi MA, Sharifi D. A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci. 2015;30:2319–24. https://doi.org/10.1007/s10103-015-1813-7.
Onger ME, Altun G, Yildiran A. Pigment epithelium-derived factor enhances peripheral nerve regeneration through modulating oxidative stress and stem cells: an experimental study. Anat Rec (Hoboken). 2023;306:2621–35. https://doi.org/10.1002/AR.25177.
Wollman Y, Rochkind S, Simantov R. Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res. 1996;18:467–70. https://doi.org/10.1080/01616412.1996.11740454. ;PAGE:STRING:ARTICLE/CHAPTER.
Van Breugel HHFI, Bär PR. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner. J Neurocytol. 1993;22:185–90. https://doi.org/10.1007/BF01246357.
Eells JT, Henry MM, Summerfelt P et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity.
Ehrlicher A, Betz T, Stuhrmann B, et al. Guiding neuronal growth with light. Proc Natl Acad Sci U S A. 2002;99:16024–8. https://doi.org/10.1073/PNAS.252631899.
Snyder SK, Byrnes KR, Borke RC, et al. Quantitation of calcitonin gene-related peptide Mrna and neuronal cell death in facial motor nuclei following axotomy and 633 Nm low power laser treatment. Piri Keşif Aracı. 2002;0:0–0. https://doi.org/10.1002/LSM.10098.
Yang C-C, Wang J, Chen S-C, Hsieh Y-L. Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J Tissue Eng Regen Med. 2016;10:120–31. https://doi.org/10.1002/term.1714.
Paolillo FR, Paolillo AR, João JP, et al. Ultrasound plus low-level laser therapy for knee osteoarthritis rehabilitation: a randomized, placebo-controlled trial. Rheumatol Int. 2018;38:785–93. https://doi.org/10.1007/s00296-018-4000-x.
Martins DO, dos Santos FM, Ciena AP, et al. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers Med Sci. 2017;32:833–40. https://doi.org/10.1007/s10103-017-2181-2.
Kanaya F, Firrell JC, Breidenbach WC. Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plast Reconstr Surg. 1996;98:1264–71. https://doi.org/10.1097/00006534-199612000-00023.
Lamas GM, Santa D, Ilio M, et al. Effects of photobiomodulation therapy (LED 630 nm) on muscle and nerve histomorphometry after axonotmesis. Photochem Photobiol. 2021;97:1116–22. https://doi.org/10.1111/php.13415.
Diker N, Aytac D, Helvacioglu F, Oguz Y. Comparative effects of photobiomodulation therapy at wavelengths of 660 and 808 Nm on regeneration of inferior alveolar nerve in rats following crush injury. Lasers Med Sci. 2019. https://doi.org/10.1007/s10103-019-02838-w.
Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, et al. Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2015;30:1047–52. https://doi.org/10.1007/s10103-015-1709-6.
Andreo L, Soldera CB, Ribeiro BG, et al. Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med Sci. 2017;32:2155–65. https://doi.org/10.1007/s10103-017-2359-7.
Gigo-Benato D, Russo TL, Tanaka EH, et al. Effects of 660 and 780 Nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med. 2010. https://doi.org/10.1002/lsm.20978.
Lipko NB. Photobiomodulation: evolution and adaptation. Photobiomodul Photomed Laser Surg. 2022;40:213–33. https://doi.org/10.1089/photob.2021.0145.
Hudson DE, Hudson DO, Wininger JM, Richardson BD. Penetration of laser light at 808 and 980 Nm in bovine tissue samples. Photomed Laser Surg. 2013;31:163–8. https://doi.org/10.1089/pho.2012.3284.
Gasperini G, de Siqueira ICR, Costa LR. Lower-level laser therapy improves neurosensory disorders resulting from bilateral mandibular sagittal split osteotomy: a randomized crossover clinical trial. J Craniomaxillofac Surg. 2014;42:e130–3. https://doi.org/10.1016/j.jcms.2013.07.009.
Guarini D, Gracia B, Ramírez-Lobos V, et al. Laser biophotomodulation in patients with neurosensory disturbance of the inferior alveolar nerve after sagittal split Ramus osteotomy: A 2-Year Follow-Up study. Photomed Laser Surg. 2018;36:3–9. https://doi.org/10.1089/pho.2017.4312.
Baydan E, Soylu E. Investigation of the efficacy of two different laser types in the treatment of lower lip paresthesia after sagittal split Ramus osteotomy. Lasers Med Sci. 2024;39. https://doi.org/10.1007/s10103-024-03973-9.
Rohringer S, Holnthoner W, Chaudary S, et al. The impact of wavelengths of LED light-therapy on endothelial cells. Sci Rep. 2017;7. https://doi.org/10.1038/S41598-017-11061-Y.