Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. & Young, N. W. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998).

Article 
ADS 

Google Scholar
 

Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

Article 
ADS 

Google Scholar
 

Fürst, J. et al. The safety band of antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

Article 
ADS 

Google Scholar
 

Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett. 31, L18401 (2004).

Article 
ADS 

Google Scholar
 

Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020670 (2004).

Robin, G. d. Q. & Adie, R. J. in Antarctic Research (eds Priestley, R. E., Adie, R. J. & Robin, G. d. Q.) 100–117 (Butterworths, London, 1964).

Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

Article 
ADS 

Google Scholar
 

Vaughan, D. & Doake, C. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–331 (1996).

Article 
ADS 

Google Scholar
 

Cook, A. & Vaughan, D. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

Article 
ADS 

Google Scholar
 

Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

Article 
ADS 

Google Scholar
 

Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S28 (2007).

ADS 

Google Scholar
 

DeConto, R. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Bassis, J. N. et al. Stability of ice shelves and ice cliffs in a changing climate. Annu. Rev. Earth Planet Sci. 52, 221–247 (2024).

Article 
ADS 

Google Scholar
 

Davison, B. et al. Annual mass budget of Antarctic ice shelves from 1997 to 2021. Sci. Adv. 9, eadi0186 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paolo, F., Fricker, H. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).

Article 
ADS 

Google Scholar
 

van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on antarctic ice shelves. Nat. Clim. Change 13, 161–166 (2023).

Article 
ADS 

Google Scholar
 

Timmermann, R. & Hellmer, H. H. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn. 63, 1011–1026 (2013).

Article 
ADS 

Google Scholar
 

Mathiot, P. & Jourdain, N. Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Sci. 19, 1595–1615 (2023).

Article 
ADS 

Google Scholar
 

Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

Article 
ADS 

Google Scholar
 

Scambos, T., Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P. & Kirby, M.) 79–92 (American Geophysical Union, Washington DC, 2003).

Skvarca, P., De Angelis, H. & Zakrajsek, A. F. Climatic conditions, mass balance and dynamics of Larsen B Ice Shelf, Antarctic Peninsula, prior to collapse. Ann. Glaciol. 39, 557–562 (2004).

Article 
ADS 

Google Scholar
 

Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. Larsen Ice Shelf has progressively thinned. Science 302, 856–859 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Lhermitte, S., Wouters, B. & HiRISE Team. The triggers for Conger Ice Shelf demise: long-term weakening vs. short-term collapse, EGU–16400 (2023).

Walker, C. et al. The multi-decadal collapse of East Antarctica’s Conger-Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).

Article 
ADS 

Google Scholar
 

Wild, C. T. et al. Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica. Cryosphere 16, 397–417 (2022).

Article 
ADS 

Google Scholar
 

Lenaerts, J. T. M. et al. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Ann. Glaciol. 59, 29–41 (2018).

Article 
ADS 

Google Scholar
 

Donat-Magnin, M. et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. Cryosphere 15, 571–593 (2021).

Article 
ADS 

Google Scholar
 

Rignot, E., Vaughan, D. G., Schmeltz, M., Dupont, T. & MacAyeal, D. Acceleration of Pine island and Thwaites glaciers, west Antarctica. Ann. Glaciol. 34, 189–194 (2002).

Article 
ADS 

Google Scholar
 

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

Article 
ADS 

Google Scholar
 

Lhermitte, S. et al. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proc. Natl Acad. Sci. USA 117, 24735–24741 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).

Article 
ADS 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 
ADS 

Google Scholar
 

Jourdain, N. C., Amory, C., Kittel, C. & Durand, G. Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200. Cryosphere 19, 1641–1674 (2025).

Article 
ADS 

Google Scholar
 

Burgard, C., Jourdain, N., Reese, R., Jenkins, A. & Mathiot, P. An assessment of basal melt parameterisations for Antarctic ice shelves. Cryosphere 16, 4931–4975 (2022).

Article 
ADS 

Google Scholar
 

Burgard, C. et al. Emulating present and future simulations of melt rates at the base of Antarctic ice shelves with neural networks. J. Adv. Model. Earth Syst. 15, e2023MS003829 (2023).

Article 
ADS 

Google Scholar
 

Park, J.-Y. et al. Future sea-level projections with a coupled atmosphere–ocean–ice-sheet model. Nat. Commun. 14, 636 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Coulon, V. et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. Cryosphere 18, 653–681 (2024).

Article 
ADS 

Google Scholar
 

Morlighem, M. et al. The West Antarctic Ice Sheet may not be vulnerable to marine ice cliff instability during the 21st century. Sci. Adv. 10, eado7794 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morris, E. M. & Vaughan, D. G. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P. & Kirby, M.) 61–68 (American Geophysical Union, 2003).

Benn, D. et al. Rapid fragmentation of Thwaites Eastern Ice Shelf. Cryosphere 16, 2545–2564 (2022).

Article 
ADS 

Google Scholar
 

Wild, C. et al. Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates. J. Glaciol. 70, e21 (2024).

Article 

Google Scholar
 

De Rydt, J. & Naughten, K. Geometric amplification and suppression of ice-shelf basal melt in West Antarctica. Cryosphere 18, 1863–1888 (2024).

Article 
ADS 

Google Scholar
 

Bradley, A. T., Bett, D. T., Dutrieux, P., De Rydt, J. & Holland, P. R. The influence of Pine Island ice shelf calving on basal melting. J. Geophys. Res. 127, e2022JC018621 (2022).

Article 
ADS 

Google Scholar
 

Beadling, R. et al. Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6. J. Clim. 33, 6555–6581 (2020).

Article 
ADS 

Google Scholar
 

Heuzé, C. Antarctic bottom water and North Atlantic deep water in CMIP6 models. Ocean Sci. 17, 59–90 (2021).

Article 
ADS 

Google Scholar
 

Smith, R. et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).

Article 
ADS 

Google Scholar
 

Martin, D. F., Cornford, S. L. & Payne, A. J. Millennial-scale vulnerability of the Antarctic Ice Sheet to regional ice shelf collapse. Geophys. Res. Lett. 46, 1467–1475 (2019).

Article 
ADS 

Google Scholar
 

Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (2020) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).

Jourdain, N. C. nicojourdain/CMIP6_data_to_ISMIP6_grid: v1.0. Zenodo https://doi.org/10.5281/zenodo.12755910 (2024).

Jourdain, N. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).

Article 
ADS 

Google Scholar
 

Beckmann, A. & Goosse, H. A parameterization of ice shelf-ocean interaction for climate models. Ocean Model. 5, 157–170 (2003).

Article 
ADS 

Google Scholar
 

Holland, P., Jenkins, A. & Holland, D. The response of ice shelf basal melting to variations in ocean temperature. J. Clim. 21, 2558–2572 (2008).

Article 
ADS 

Google Scholar
 

Little, C. M., Gnanadesikan, A. & Oppenheimer, M. How ice shelf morphology controls basal melting. J. Geophys. Res. https://doi.org/10.1029/2008JC005197 (2009).

Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

Article 
ADS 

Google Scholar
 

Lazeroms, W., Jenkins, A., Gudmunsson, G. & van de Wal, R. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere 12, 49–70 (2018).

Article 
ADS 

Google Scholar
 

Lazeroms, W., Jenkins, A., Rienstra, S. & van de Wal, R. An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes. J. Phys. Oceanogr. 49, 917–939 (2019).

Article 
ADS 

Google Scholar
 

Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X. & Winkelmann, R. Antarctic sub-shelf melt rates via PICO. Cryosphere 12, 1969–1985 (2018).

Article 
ADS 

Google Scholar
 

Lambert, E. & Burgard, C. Brief communication: sensitivity of Antarctic ice shelf melting to ocean warming across basal melt models. Cryosphere 19, 2495–2505 (2025).

Article 
ADS 

Google Scholar
 

Madec, G. & the NEMO System Team. NEMO ocean engine reference manual. Zenodo https://doi.org/10.5281/zenodo.1464816 (2019).

Tsujino, H. et al. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Model. 130, 79–139 (2018).

Article 
ADS 

Google Scholar
 

Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Gallée, H. & Schayes, G. Development of a three-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671–685 (1994).

Article 
ADS 

Google Scholar
 

Franco, B., Fettweis, X., Lang, C. & Erpicum, M. Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere 6, 695–711 (2012).

Article 
ADS 

Google Scholar
 

Noël, B. et al. Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution. Nat. Commun. 14, 7949 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).

Article 
ADS 

Google Scholar
 

Gagliardini, O. et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev. 6, 1299–1318 (2013).

Article 
ADS 

Google Scholar
 

Brondex, J., Gillet-Chaulet, F. & Gagliardini, O. Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law. Cryosphere 13, 177–195 (2019).

Article 
ADS 

Google Scholar
 

Klein, E. et al. Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting. J. Glaciol. 66, 861–875 (2020).

Article 
ADS 

Google Scholar
 

Mosbeux, C., Padman, L., Klein, E., Bromirski, P. & Fricker, H. Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations. Cryosphere 17, 2585–2606 (2023).

Article 
ADS 

Google Scholar
 

Gillet-Chaulet, F. et al. Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier. Geophys. Res. Lett. 43, 10,311–10,321 (2016).

Article 

Google Scholar
 

Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

Article 
ADS 

Google Scholar
 

Meehl, G. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-based Antarctica Ice Velocity map, Version 2 (2017) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).

van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

Article 
ADS 

Google Scholar
 

Forster, P. et al. in The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (IPCC, Cambridge Univ. Press, 2021).

Mastrandrea, M. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC, 2010).

Burgard, C. et al. Data and scripts to reproduce figures from “Ocean warming threatens the viability of 60% of Antarctic ice shelves”. Zenodo https://doi.org/10.5281/zenodo.13768758 (2025).