Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, et al. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci. 2021;304:110823. https://doi.org/10.1016/j.plantsci.2021.110823.

Article 
CAS 
PubMed 

Google Scholar
 

Tian X, Li Z, Liu Y, Li W. Role of tillage measures in mitigating waterlogging damage in rapeseed. BMC Plant Biol. 2023;23(1):231. https://doi.org/10.1186/s12870-023-04250-7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang R, Yue Z, Chen X, Huang R, Zhou Y, Cao X. Effects of waterlogging at different growth stages on the photosynthetic characteristics and grain yield of sorghum (Sorghum bicolor L.). Sci Rep. 2023;13:7212. https://doi.org/10.1038/s41598-023-32478-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tian LX, Bi WS, Ren XS, Li WL, Sun L, Li J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.) than waterlogging in Northeast China. Eur J Agron. 2020;117:126054. https://doi.org/10.1016/j.eja.2020.126054.

Article 

Google Scholar
 

Zou X, Jiang Y, Liu L, Zhang Z, Zheng Y. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol. 2010;10:1–16. https://doi.org/10.1186/1471-2229-10-189.

Article 
CAS 

Google Scholar
 

Shiono K, Takahashi H, Colmer TD, Nakazono M. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 2008;2008(175):52–8. https://doi.org/10.1016/j.plantsci.2008.03.002.

Article 
CAS 

Google Scholar
 

Feng F, Wang Q, Jiang K, Lei D, Huang S, Wu H, et al. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. Plant Physiol Biochem. 2023;204:108087. https://doi.org/10.1016/j.plaphy.2023.108087.

Article 
CAS 
PubMed 

Google Scholar
 

Arora K, Panda KK, Mittal S, Mallikarjuna MG, Rao AR, Dash PK, et al. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Sci Rep. 2017;7:10950. https://doi.org/10.1038/s41598-017-10561-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zaidi PH, Rafique S, Singh NN. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur J Agron. 2003;19:383–99. https://doi.org/10.1016/S1161-0301(02)00090-4.

Article 

Google Scholar
 

Kunwar UB, Wen J, Subedi R, Bist NS, Pandit NR. Adaptations of rice seed germination to drought and hypoxic conditions: molecular and physiological insights. Seeds. 2024;3:656–76. https://doi.org/10.3390/seeds3040043.

Article 

Google Scholar
 

Yan D, Gao Y, Zhang Y, Li D, Dirk LM, Downie AB, et al. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development. J Exp Bot. 2024;75:5955–70. https://doi.org/10.1093/jxb/erae284.

Article 
CAS 
PubMed 

Google Scholar
 

Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci. 2019;10:62. https://doi.org/10.3389/fpls.2019.00062.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011;190:289–98. https://doi.org/10.1111/j.1469-8137.2010.03575.x.

Article 
CAS 
PubMed 

Google Scholar
 

Liang K, Tang K, Fang T, Qiu F. Waterlogging tolerance in maize: genetic and molecular basis. Mol Breeding. 2020;40:111. https://doi.org/10.1007/s11032-020-01190-0.

Article 

Google Scholar
 

Wang X, Oh MW, Komatsu S. Characterization of S-adenosylmethionine synthetases in soybean under flooding and drought stresses. Biol Plant. 2016;60:269–78. https://doi.org/10.1007/s10535-016-0586-6.

Article 
CAS 

Google Scholar
 

Guo Z, Cai L, Liu C, Chen Z, Guan S, Ma W, et al. Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Sci Rep. 2022;12:6224. https://doi.org/10.1038/s41598-022-10420-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ren B, Dong S, Zhao B, Liu P, Zhang J. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci. 2017;8:1216. https://doi.org/10.3389/fpls.2017.01216.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang Y, Chen X, Geng S, Zhang X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front Plant Sci. 2025;16:1545912. https://doi.org/10.3389/fpls.2025.1545912.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang J, Wang D, Zhu M, Li F. Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle. Front Plant Sci. 2021;12:680376. https://doi.org/10.3389/fpls.2021.680376.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yu F, Liang K, Zhang Z, Du D, Zhang X, Zhao H, et al. Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize. Theor Appl Genet. 2018;131:2299–310. https://doi.org/10.1007/s00122-018-3152-0.

Article 
CAS 
PubMed 

Google Scholar
 

Li K, Yu Y, Zhang N, Xie L, Huang W, Qi X, et al. Unlocking the genetic basis of vitamin E content in sweet corn kernels: expanding breeding targets through genome-wide association studies. Plant Sci. 2024;348:112233. https://doi.org/10.1016/j.plantsci.2024.112233.

Article 
CAS 
PubMed 

Google Scholar
 

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 2014;15:1–21. https://doi.org/10.1186/s13059-014-0550-8.

Article 
CAS 

Google Scholar
 

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–9. https://doi.org/10.1093/nar/gkx382.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC, et al. PlantTFDB: a comprehensive plant transcription factor database. Nucleic acids res. 2007;36:D966–9. https://doi.org/10.1093/nar/gkm841.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Salem MA, Jüppner J, Bajdzienko K, Giavalisco P. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods. 2016;12:1–15. https://doi.org/10.1186/s13007-016-0146-2.

Article 
CAS 

Google Scholar
 

Wang H, Yan S, Xin H, Huang W, Zhang H, Teng S, et al. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell. 2019;31:1328–43. https://doi.org/10.1105/tpc.18.00736.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yan S, Huang W, Gao J, Fu H, Liu J. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol Bioch. 2018;127:590–8. https://doi.org/10.1016/j.plaphy.2018.04.020.

Article 
CAS 

Google Scholar
 

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. https://doi.org/10.1093/bioinformatics/btm308.

Article 
CAS 
PubMed 

Google Scholar
 

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56. https://doi.org/10.1007/s00439-011-1118-2.

Article 
CAS 
PubMed 

Google Scholar
 

Li K, Zeng J, Zhang N, Yu Y, Zhu W, Li G, et al. Multi-layer molecular analysis reveals distinctive metabolomic and transcriptomic profiles of different sweet corn varieties. Front Plant Sci. 2024;15:1453031. https://doi.org/10.3389/fpls.2024.1453031.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Barrett JC, Fry B, Maller JDMJ, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. https://doi.org/10.1093/bioinformatics/bth457.

Article 
CAS 
PubMed 

Google Scholar
 

Paradis E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics. 2010;26:419–20. https://doi.org/10.1093/bioinformatics/btp696.

Article 
CAS 
PubMed 

Google Scholar
 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2. https://doi.org/10.1093/bioinformatics/btq675.

Article 
CAS 
PubMed 

Google Scholar
 

Wickham H. ggplot2. WIREs Comput Stat. 2011;3:180–5. https://doi.org/10.1002/wics.147.

Article 

Google Scholar
 

Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The role of glutamine synthetase (GS) and glutamate synthase (GOGAT) in the improvement of nitrogen use efficiency in cereals. Biomolecules. 2023;13:1771. https://doi.org/10.3390/biom13121771.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE. 2014;9:e96014. https://doi.org/10.1371/journal.pone.0096014.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Skogerson K, Harrigan GG, Reynolds TL, Halls SC, Ruebelt M, Iandolino A, et al. Impact of genetics and environment on the metabolite composition of maize grain. J Agric Food Chem. 2010;58:3600–10. https://doi.org/10.1021/jf903705y.

Article 
CAS 
PubMed 

Google Scholar
 

Barnes AC, Rodríguez-Zapata F, Juárez-Núñez KA, Gates DJ, Janzen GM, Kur A, et al. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc Natl Acad Sci U S A. 2022;119:e2100036119. https://doi.org/10.1073/pnas.2100036119.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, et al. Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem. 2020;148:228–36. https://doi.org/10.1016/j.plaphy.2020.01.020.

Article 
CAS 
PubMed 

Google Scholar
 

Ren, Zhan J, Dong S, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS one. 2016;11: e0161424. https://doi.org/10.1371/journal.pone.0161424.

Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plants under waterlogging. Protoplasma. 2010. https://doi.org/10.1007/s00709-009-0098-8.

Article 
PubMed 

Google Scholar
 

Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, et al. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol. 2023;24:141. https://doi.org/10.1186/s13059-023-02984-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

South PF, Cavanagh AP, Liu HW, Ort DR. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science. 2019;363:eaat9077. https://doi.org/10.1126/science.aat9077.

Article 
CAS 
PubMed 

Google Scholar
 

Salah A, Zhan M, Cao C, Han Y, Ling L, Liu Z, et al. Γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci Rep. 2019;9:484. https://doi.org/10.1038/s41598-018-36334-y.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lindsey AJ, Ortez OA, Thomison PR, Carter PR, Coulter JA, Roth GW, et al. Severe storm damage and short-term weather stresses on corn: a review. Crop Sci. 2024;64:1129–66. https://doi.org/10.1002/csc2.21212.

Article 

Google Scholar
 

Liu S, Qin F. Genetic dissection of maize drought tolerance for trait improvement. Mol Breeding. 2021;41:8. https://doi.org/10.1007/s11032-020-01194-w.

Article 

Google Scholar
 

Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, et al. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS ONE. 2013;8:e79305. https://doi.org/10.1371/journal.pone.0079305.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bahieldin A, Sabir JS, Ramadan A, Alzohairy AM, Younis RA, Shokry AM, et al. Control of glycerol biosynthesis under high salt stress in Arabidopsis. Funct Plant Biol. 2013;41:87–95. https://doi.org/10.1071/FP13005.

Article 
CAS 
PubMed 

Google Scholar
 

Li X, Takahashi T, Suzuki N, Kaiser HM. The impact of climate change on maize yields in the United States and China. Agric Syst. 2011;104:348–53. https://doi.org/10.1016/j.agsy.2010.12.006.

Article 

Google Scholar
 

Tas T, Mutlu A. Morpho-physiological effects of environmental stress on yield and quality of sweet corn varieties (Zea mays L.). PeerJ. 2021;9:e12613. https://doi.org/10.7717/peerj.12613.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
Â