Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, et al. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci. 2021;304:110823. https://doi.org/10.1016/j.plantsci.2021.110823.
Tian X, Li Z, Liu Y, Li W. Role of tillage measures in mitigating waterlogging damage in rapeseed. BMC Plant Biol. 2023;23(1):231. https://doi.org/10.1186/s12870-023-04250-7.
Zhang R, Yue Z, Chen X, Huang R, Zhou Y, Cao X. Effects of waterlogging at different growth stages on the photosynthetic characteristics and grain yield of sorghum (Sorghum bicolor L.). Sci Rep. 2023;13:7212. https://doi.org/10.1038/s41598-023-32478-8.
Tian LX, Bi WS, Ren XS, Li WL, Sun L, Li J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.) than waterlogging in Northeast China. Eur J Agron. 2020;117:126054. https://doi.org/10.1016/j.eja.2020.126054.
Zou X, Jiang Y, Liu L, Zhang Z, Zheng Y. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol. 2010;10:1–16. https://doi.org/10.1186/1471-2229-10-189.
Shiono K, Takahashi H, Colmer TD, Nakazono M. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 2008;2008(175):52–8. https://doi.org/10.1016/j.plantsci.2008.03.002.
Feng F, Wang Q, Jiang K, Lei D, Huang S, Wu H, et al. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. Plant Physiol Biochem. 2023;204:108087. https://doi.org/10.1016/j.plaphy.2023.108087.
Arora K, Panda KK, Mittal S, Mallikarjuna MG, Rao AR, Dash PK, et al. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Sci Rep. 2017;7:10950. https://doi.org/10.1038/s41598-017-10561-1.
Zaidi PH, Rafique S, Singh NN. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur J Agron. 2003;19:383–99. https://doi.org/10.1016/S1161-0301(02)00090-4.
Kunwar UB, Wen J, Subedi R, Bist NS, Pandit NR. Adaptations of rice seed germination to drought and hypoxic conditions: molecular and physiological insights. Seeds. 2024;3:656–76. https://doi.org/10.3390/seeds3040043.
Yan D, Gao Y, Zhang Y, Li D, Dirk LM, Downie AB, et al. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development. J Exp Bot. 2024;75:5955–70. https://doi.org/10.1093/jxb/erae284.
Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci. 2019;10:62. https://doi.org/10.3389/fpls.2019.00062.
Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011;190:289–98. https://doi.org/10.1111/j.1469-8137.2010.03575.x.
Liang K, Tang K, Fang T, Qiu F. Waterlogging tolerance in maize: genetic and molecular basis. Mol Breeding. 2020;40:111. https://doi.org/10.1007/s11032-020-01190-0.
Wang X, Oh MW, Komatsu S. Characterization of S-adenosylmethionine synthetases in soybean under flooding and drought stresses. Biol Plant. 2016;60:269–78. https://doi.org/10.1007/s10535-016-0586-6.
Guo Z, Cai L, Liu C, Chen Z, Guan S, Ma W, et al. Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Sci Rep. 2022;12:6224. https://doi.org/10.1038/s41598-022-10420-8.
Ren B, Dong S, Zhao B, Liu P, Zhang J. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci. 2017;8:1216. https://doi.org/10.3389/fpls.2017.01216.
Zhang Y, Chen X, Geng S, Zhang X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front Plant Sci. 2025;16:1545912. https://doi.org/10.3389/fpls.2025.1545912.
Wang J, Wang D, Zhu M, Li F. Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle. Front Plant Sci. 2021;12:680376. https://doi.org/10.3389/fpls.2021.680376.
Yu F, Liang K, Zhang Z, Du D, Zhang X, Zhao H, et al. Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize. Theor Appl Genet. 2018;131:2299–310. https://doi.org/10.1007/s00122-018-3152-0.
Li K, Yu Y, Zhang N, Xie L, Huang W, Qi X, et al. Unlocking the genetic basis of vitamin E content in sweet corn kernels: expanding breeding targets through genome-wide association studies. Plant Sci. 2024;348:112233. https://doi.org/10.1016/j.plantsci.2024.112233.
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 2014;15:1–21. https://doi.org/10.1186/s13059-014-0550-8.
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–9. https://doi.org/10.1093/nar/gkx382.
Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC, et al. PlantTFDB: a comprehensive plant transcription factor database. Nucleic acids res. 2007;36:D966–9. https://doi.org/10.1093/nar/gkm841.
Salem MA, Jüppner J, Bajdzienko K, Giavalisco P. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods. 2016;12:1–15. https://doi.org/10.1186/s13007-016-0146-2.
Wang H, Yan S, Xin H, Huang W, Zhang H, Teng S, et al. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell. 2019;31:1328–43. https://doi.org/10.1105/tpc.18.00736.
Yan S, Huang W, Gao J, Fu H, Liu J. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol Bioch. 2018;127:590–8. https://doi.org/10.1016/j.plaphy.2018.04.020.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. https://doi.org/10.1093/bioinformatics/btm308.
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56. https://doi.org/10.1007/s00439-011-1118-2.
Li K, Zeng J, Zhang N, Yu Y, Zhu W, Li G, et al. Multi-layer molecular analysis reveals distinctive metabolomic and transcriptomic profiles of different sweet corn varieties. Front Plant Sci. 2024;15:1453031. https://doi.org/10.3389/fpls.2024.1453031.
Barrett JC, Fry B, Maller JDMJ, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. https://doi.org/10.1093/bioinformatics/bth457.
Paradis E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics. 2010;26:419–20. https://doi.org/10.1093/bioinformatics/btp696.
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2. https://doi.org/10.1093/bioinformatics/btq675.
Wickham H. ggplot2. WIREs Comput Stat. 2011;3:180–5. https://doi.org/10.1002/wics.147.
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The role of glutamine synthetase (GS) and glutamate synthase (GOGAT) in the improvement of nitrogen use efficiency in cereals. Biomolecules. 2023;13:1771. https://doi.org/10.3390/biom13121771.
Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE. 2014;9:e96014. https://doi.org/10.1371/journal.pone.0096014.
Skogerson K, Harrigan GG, Reynolds TL, Halls SC, Ruebelt M, Iandolino A, et al. Impact of genetics and environment on the metabolite composition of maize grain. J Agric Food Chem. 2010;58:3600–10. https://doi.org/10.1021/jf903705y.
Barnes AC, RodrÃguez-Zapata F, Juárez-Núñez KA, Gates DJ, Janzen GM, Kur A, et al. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc Natl Acad Sci U S A. 2022;119:e2100036119. https://doi.org/10.1073/pnas.2100036119.
Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, et al. Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem. 2020;148:228–36. https://doi.org/10.1016/j.plaphy.2020.01.020.
Ren, Zhan J, Dong S, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS one. 2016;11: e0161424. https://doi.org/10.1371/journal.pone.0161424.
Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plants under waterlogging. Protoplasma. 2010. https://doi.org/10.1007/s00709-009-0098-8.
Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, et al. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol. 2023;24:141. https://doi.org/10.1186/s13059-023-02984-z.
South PF, Cavanagh AP, Liu HW, Ort DR. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science. 2019;363:eaat9077. https://doi.org/10.1126/science.aat9077.
Salah A, Zhan M, Cao C, Han Y, Ling L, Liu Z, et al. Γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci Rep. 2019;9:484. https://doi.org/10.1038/s41598-018-36334-y.
Lindsey AJ, Ortez OA, Thomison PR, Carter PR, Coulter JA, Roth GW, et al. Severe storm damage and short-term weather stresses on corn: a review. Crop Sci. 2024;64:1129–66. https://doi.org/10.1002/csc2.21212.
Liu S, Qin F. Genetic dissection of maize drought tolerance for trait improvement. Mol Breeding. 2021;41:8. https://doi.org/10.1007/s11032-020-01194-w.
Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, et al. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS ONE. 2013;8:e79305. https://doi.org/10.1371/journal.pone.0079305.
Bahieldin A, Sabir JS, Ramadan A, Alzohairy AM, Younis RA, Shokry AM, et al. Control of glycerol biosynthesis under high salt stress in Arabidopsis. Funct Plant Biol. 2013;41:87–95. https://doi.org/10.1071/FP13005.
Li X, Takahashi T, Suzuki N, Kaiser HM. The impact of climate change on maize yields in the United States and China. Agric Syst. 2011;104:348–53. https://doi.org/10.1016/j.agsy.2010.12.006.
Tas T, Mutlu A. Morpho-physiological effects of environmental stress on yield and quality of sweet corn varieties (Zea mays L.). PeerJ. 2021;9:e12613. https://doi.org/10.7717/peerj.12613.