Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, art32 (2009).

Article 

Google Scholar
 

Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

Article 

Google Scholar
 

Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

Article 

Google Scholar
 

Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2019).

Article 

Google Scholar
 

Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & De Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

Article 
CAS 

Google Scholar
 

Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

Article 
CAS 

Google Scholar
 

Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resour. Res. 54, 345–358 (2018).

Article 
CAS 

Google Scholar
 

Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

Article 
CAS 

Google Scholar
 

Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

Article 
CAS 

Google Scholar
 

Lamboll, R. D. et al. Assessing the size and uncertainty of remaining carbon budgets. Nat. Clim. Change 13, 1360–1367 (2023).

Article 

Google Scholar
 

Lade, S. J., Fetzer, I., Cornell, S. E. & Crona, B. A prototype Earth system impact metric that accounts for cross-scale interactions. Environ. Res. Lett. 16, 115005 (2021).

Article 

Google Scholar
 

Chrysafi, A. et al. Quantifying Earth system interactions for sustainable food production via expert elicitation. Nat. Sustain. 5, 830–842 (2022).

Article 

Google Scholar
 

IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).

Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 2597–2602 (2016).

Article 
CAS 

Google Scholar
 

Pfleiderer, P. et al. Reversal of the impact chain for actionable climate information. Nat. Geosci. 18, 10–19 (2025).

Bossy, T., Gasser, T. & Ciais, P. Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios. Geosci. Model Dev. 15, 8831–8868 (2022).

Article 
CAS 

Google Scholar
 

Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 7958 (2015).

Article 
CAS 

Google Scholar
 

Byers, E. et al. AR6 Scenario Explorer and Database Hosted by IIASA (International Institute for Applied Systems Analysis, 2022); https://data.ece.iiasa.ac.at/ar6

IPCC Special Report on Impacts of Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2022).

Niederdrenk, A. L. & Notz, D. Arctic sea ice in a 1.5 °C warmer world. Geophys. Res. Lett. 45, 1963–1971 (2018).

Article 

Google Scholar
 

Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

Article 

Google Scholar
 

Kvale, K. et al. Carbon dioxide emission pathways avoiding dangerous ocean impacts. Weather Clim. Soc. 4, 212–229 (2012).

Article 

Google Scholar
 

Schubert, R. et al. The Future Oceans—Warming Up, Rising High, Turning Sour (WBGU, 2006).

Mastrandrea, M. D. et al. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim. Change 108, 675–691 (2011).

Article 

Google Scholar
 

Babiker, M. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 12 (Cambridge Univ. Press, 2022).

Grubb, M., Wieners, C. & Yang, P. Modeling myths: on DICE and dynamic realism in integrated assessment models of climate change mitigation. WIREs Clim. Change 12, e698 (2021).

Pindyck, R. S. The use and misuse of models for climate policy. Rev. Environ. Econ. Policy 11, 100–114 (2017).

Article 

Google Scholar
 

Bossy, T. et al. Least-cost and 2 °C-compliant mitigation pathways robust to physical uncertainty, economic paradigms, and intergenerational cost distribution. Environ. Res. Clim. 3, 025005 (2024).

Article 

Google Scholar
 

Tokarska, K. B. & Zickfeld, K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ. Res. Lett. 10, 094013 (2015).

Article 

Google Scholar
 

Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Change 8, 7–10 (2018).

Article 

Google Scholar
 

Aengenheyster, M., Feng, Q. Y., Van Der Ploeg, F. & Dijkstra, H. A. The point of no return for climate action: effects of climate uncertainty and risk tolerance. Earth Syst. Dynam. 9, 1085–1095 (2018).

Article 

Google Scholar
 

Duarte, C. M. et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36, 221–236 (2013).

Article 
CAS 

Google Scholar
 

Doney, S. C. et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl Acad. Sci. USA 104, 14580–14585 (2007).

Article 
CAS 

Google Scholar
 

Visioni, D., Pitari, G. & Aquila, V. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide. Atmos. Chem. Phys. 17, 3879–3889 (2017).

Article 
CAS 

Google Scholar
 

Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

Article 
CAS 

Google Scholar
 

Van Soest, H. L., Den Elzen, M. G. J. & Van Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 12, 2140 (2021).

Article 

Google Scholar
 

Bruckner, T. et al. Climate system modeling in the framework of the tolerable windows approach: the ICLIPS climate model. Clim. Change 56, 119–137 (2003).

Petschel-Held, G. et al. Tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).

Zickfeld, K. & Bruckner, T. Reducing the risk of Atlantic thermohaline circulation collapse: sensitivity analysis of emissions corridors. Clim. Change 91, 291–315 (2008).

Article 
CAS 

Google Scholar
 

Stocker, T. F. The closing door of climate targets. Science 339, 280–282 (2013).

Article 
CAS 

Google Scholar
 

Steinacher, M., Joos, F. & Stocker, T. F. Allowable carbon emissions lowered by multiple climate targets. Nature 499, 197–201 (2013).

Article 
CAS 

Google Scholar
 

Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

Article 

Google Scholar
 

MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

Article 

Google Scholar
 

Ricciuto, D. M., Davis, K. J. & Keller, K. A Bayesian calibration of a simple carbon cycle model: the role of observations in estimating and reducing uncertainty. Glob. Biogeochem. Cycles 22, 2006GB002908 (2008).

Article 

Google Scholar
 

Geoffroy, O. et al. Transient climate tesponse in a two-layer energy-balance model. Part II: representation of the efficacy ofdeep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Clim. 26, 1859–1876 (2013).

Article 

Google Scholar
 

Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2014).

Strassmann, K. M., Joos, F. & Strassmann, K. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations. Geosci. Model Dev. 11, 1887–1908 (2018).

Gasser, T. et al. The compact Earth system model OSCAR v2.2: description and first results. Geosci. Model Dev. 10, 271–319 (2017).

Article 
CAS 

Google Scholar
 

He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

Article 
CAS 

Google Scholar
 

Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

Article 
CAS 

Google Scholar
 

Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

Article 
CAS 

Google Scholar
 

Bernie, D., Lowe, J., Tyrrell, T. & Legge, O. Influence of mitigation policy on ocean acidification. Geophys. Res. Lett. 37, 2010GL043181 (2010).

Article 

Google Scholar
 

Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

Article 

Google Scholar
 

Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117, 2011JD017187 (2012).

Article 

Google Scholar
 

Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S. & Mosher, S. Berkeley Earth temperature averaging process. Geoinform. Geostat. Overv. https://doi.org/10.4172/2327-4581.1000103 (2013).

Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

Article 

Google Scholar
 

Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

Article 

Google Scholar
 

Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2014).

Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2014).

Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2014).

Kucukelbir, A. Automatic differentiation variational inference. J. Mach. Learn. Res. 18, 430–474 (2017).


Google Scholar
 

Huntingford, C. et al. Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0 °C. Earth Syst. Dynam. 8, 617–626 (2017).

Article 

Google Scholar
 

Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 46, 79–88 (1980).

Article 

Google Scholar
 

Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. By Benjamin Gompertz, Esq. F. R. S. Proc. R. Soc. Lond. 2, 252–253 (1833).

Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

Article 

Google Scholar
 

Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (IPCC, Cambridge Univ. Press, 2021).

Gidden, M. J. et al. Aligning climate scenarios to emissions inventories shifts global benchmarks. Nature 624, 102–108 (2023).

Article 
CAS 

Google Scholar
 

Ou, Y. et al. Can updated climate pledges limit warming well below 2 °C? Science 374, 693–695 (2021).

Article 
CAS 

Google Scholar
 

Gasser, T. Pathfinder: v1.0.1. Zenodo https://doi.org/10.5281/zenodo.7003848 (2022).

Bossy, T. & Gasser, T. Code for ‘Spaces of anthropogenic CO2 emissions compatible with climate boundaries’. Zenodo https://doi.org/10.5281/zenodo.15235819 (2025).