Varpe, Ø, Daase, M. & Kristiansen, T. A fish-eye view on the new Arctic lightscape. Ices J. Mar. Sci. 72, 2532–2538 (2015).
Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).
Stroeve, J. et al. A multi-sensor and modeling approach for mapping light under sea ice during the ice-growth season. Front. Mar. Sci. 7, (2021).
Castellani, G. et al. Shine a light: Under-ice light and its ecological implications in a changing Arctic Ocean. Ambio 51, 307–317 (2022).
Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2022).
Flores, H. et al. Sea-ice decline could keep zooplankton deeper for longer. Nat. Clim. Chang. 1–9 (2023).
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 5, 673–677 (2015).
Langbehn, T. J. & Varpe, Ø Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob. Chang. Biol. 23, 5318–5330 (2017).
Notz, D. et al. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geosci. Model Dev. 9, 3427–3446 (2016).
Ljungström, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N. & Elliott, S. Cice: the los alamos sea ice model documentation and software user’s manual version 4.1 la-cc-06-012. T-3 Fluid Dynamics Group. Los Alamos Natl Lab. 675, 500 (2015).
Séférian, R. et al. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A). Geoscientific Model Dev. 11, 321–338 (2018).
Ernst, M., Holst, H., Winter, M. & Altermatt, P. P. SunCalculator: A program to calculate the angular and spectral distribution of direct and diffuse solar radiation. Sol. Energy Mater. Sol. Cells 157, 913–922 (2016).
Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687–691 (2009).
Warren, S. G., Brandt, R. E. & Grenfell, T. C. Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl. Opt. 45, 5320–5334 (2006).
Perovich, D. K. & Govoni, J. W. Absorption coefficients of ice from 250 to 400 nm. Geophys. Res. Lett. 18, 1233–1235 (1991).
Perovich, D. K. The optical properties of sea ice. Monograph 96-1 US Army Corps of Engineers Cold Regions Research & Engineering Labo- ratory. https://apps.dtic.mil/dtic/tr/fulltext/u2/a310586.pdf (1996).
Atsushi Matsuoka, Yannick Huot, Koji Shimada, Sei-Ichi Saitoh, and Marcel Babin. Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. https://doi.org/10.5589/m07-059.
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
Langehaug, H. R. et al. Constraining CMIP6 estimates of Arctic Ocean temperature and salinity in 2025-2055. Front. Mar. Sci. 10, 1211562 (2023).
Long, M., Zhang, L., Hu, S. & Qian, S. Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation. J. Clim. 34, 1515–1529 (2021).
Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C. & Osinski, R. A spatial evaluation of Arctic sea ice and regional limitations in CMIP6 historical simulations. J. Clim. 34, 6399–6420 (2021).
Henke, M. et al. Assessment of Arctic sea ice and surface climate conditions in nine CMIP6 climate models. Arct. Antarct. Alp. Res. 55, (2023).
Lee, Y. J., Watts, M., Maslowski, W., Kinney, J. C. & Osinski, R. Assessment of the pan-Arctic accelerated rate of sea ice decline in CMIP6 historical simulations. J. Clim. 36, 6069–6089 (2023).
Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Sherman, K., Belkin, I., Friedland, K. D. & O’Reilly, J. Changing states of North Atlantic large marine ecosystems. Environ. Dev. 7, 46–58 (2013).
Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).
Smith, R. C. et al. Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. Science 255, 952–959 (1992).
Tartarotti, B. et al. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Sci. Rep. 7, 4487 (2017).
Alves, R. N., Mahamed, A. H., Alarcon, J. F., Al Suwailem, A. & Agustí, S. Adverse Effects of Ultraviolet Radiation on Growth, Behavior, Skin Condition, Physiology, and Immune Function in Gilthead Seabream (Sparus aurata). Front. Mar. Sci. 7, 306 (2020).
Béland, F., Browman, H. I., Rodriguez, C. A. & St-Pierre, J.-F. Effect of solar ultraviolet radiation (280-400 nm) on the eggs and larvae of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 56, 1058–1067 (1999).
Aune, M. et al. Distribution and ecology of polar cod (Boreogadus saida) in the eastern Barents Sea: A review of historical literature. Mar. Environ. Res. 166, 105262 (2021).
Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).
Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? Polar Biol. 35, 401–412 (2012).
Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).
Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).
Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Climate Res. 33, 271–283 (2007).
Puvanendran, V. & Brown, J. A. Effect of light intensity on the foraging and growth of Atlantic cod larvae:interpopulation difference?. Mar. Ecol. Prog. Ser. 167, 207–214 (1998).
Kashiwase, H., Ohshima, K. I., Nihashi, S. & Eicken, H. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep. 7, 8170 (2017).
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).
Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).
Shu, Q. et al. Arctic Ocean Amplification in a warming climate in CMIP6 models. Sci. Adv. 8, eabn9755 (2022).
Alabia, I. D., García Molinos, J., Hirata, T., Mueter, F. J. & David, C. L. Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate. Sci. Rep. 13, 4076 (2023).
Geoffroy, M. et al. The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem. Elementa (Wash., DC) 11, (2023).
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
Cote, D. et al. Forecasted shifts in thermal habitat for cod species in the northwest Atlantic and eastern Canadian arctic. Front. Mar. Sci. 8, (2021).
Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).
Malloy, K. D., Holman, M. A., Mitchell, D. & Detrich, H. W. 3rd Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton. Proc. Natl Acad. Sci. USA 94, 1258–1263 (1997).
Alves, R. N. & Agustí, S. Effect of ultraviolet radiation (UVR) on the life stages of fish. Rev. Fish. Biol. Fish. 30, 335–372 (2020).
Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Duncan, R. J. et al. Biomolecular profiles of Arctic Sea-ice diatoms highlight the role of under-ice light in cellular energy allocation. ISME Commun. 4, ycad010 (2024).
Cooper, D. W. et al. Pacific cod or tikhookeanskaya treska (Gadus macrocephalus) in the Chukchi Sea during recent warm years: Distribution by life stage and age-0 diet and condition. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 208, 105241 (2023).
Bigman, J. S. et al. Predicting Pacific cod thermal spawning habitat in a changing climate. ICES J. Mar. Sci. fsad096 (2023).
Wildes, S. et al. Walleye Pollock breach the Bering Strait: A change of the cods in the arctic. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 204, 105165 (2022).
Hátún, H. et al. Large bio-geographical shifts in the north-eastern Atlantic Ocean: From the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog. Oceanogr. 80, 149–162 (2009).
Payne, M. R. et al. Skilful decadal-scale prediction of fish habitat and distribution shifts. Nat. Commun. 13, 2660 (2022).
Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032 (2016).
Fauchald, P., Mauritzen, M. & Gjøsaeter, H. Density-dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).
Levine, R. M. et al. Climate-driven shifts in pelagic fish distributions in a rapidly changing Pacific Arctic. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 208, 105244 (2023).
Clement Kinney, J. et al. On the variability of the Bering Sea Cold Pool and implications for the biophysical environment. PLoS One 17, e0266180 (2022).
Stabeno, P. J. & Bell, S. W. Extreme conditions in the Bering sea (2017–2018): Record-breaking low sea-ice extent. Geophys. Res. Lett. 46, 8952–8959 (2019).
Stafford, K. et al. Northward Range Expansion of Subarctic Upper Trophic Level Animals into the Pacific Arctic Region. Oceanography 35, 158–166 (2022).
Yool, A. et al. Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations. Geosci. Model Dev. 14, 3437–3472 (2021).
Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 30, 8179–8205 (2017).
Szekely, T., Gourrion, J., Pouliquen, S. & Reverdin, G. The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and validation. Ocean Sci. 15, 1601–1614 (2019).
Lorenz, R. et al. Prospects and caveats of weighting climate models for summer maximum temperature projections over north America. J. Geophys. Res. 123, 4509–4526 (2018).
F. et al Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 3, 884 (2018).
Bird, R. E. & Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. J. Appl. Meteorol. Climatol. 25, 87–97 (1986).
Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics. (Springer, New York, NY, 2012).
Abernathey, R. P. et al. Cloud-Native Repositories for Big Scientific Data. 23, 26–35 (2021).
Hill, C., DeLuca, C., Balaji, Suarez, M. & Da Silva, A. The architecture of the Earth System Modeling Framework. Comput. Sci. Eng. 6, 18–28 (2004).
Hegglin, M., Kinnison, D., Lamarque, J.-F. & Plummer, D. input4MIPs.CMIP6.ScenarioMIP.UReading.UReading-CCMI-ssp585-1-0. Earth System Grid Federation https://doi.org/10.22033/ESGF/INPUT4MIPS.9544 (2018).
Hegglin, M., Kinnison, D., Lamarque, J.-F. & Plummer, D. input4MIPs.CMIP6.ScenarioMIP.UReading.UReading-CCMI-ssp245-1-0. Earth System Grid Federation https://doi.org/10.22033/ESGF/INPUT4MIPS.9542 (2018).
Björk, G., Stranne, C. & Borenäs, K. The sensitivity of the arctic ocean sea ice thickness and its dependence on the surface albedo parameterization. J. Clim. 26, 1355–1370 (2013).
Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).
Letterly, A., Key, J. & Liu, Y. Arctic climate: changes in sea ice extent outweigh changes in snow cover. Cryosphere 12, 3373–3382 (2018).
Briegleb, B. P. et al. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. (2004).
Budgell, W. P. Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dyn. 55, 370–387 (2005).
Grenfell, T. C. & Maykut, G. A. The optical properties of ice and snow in the arctic basin. J. Glaciol. 18, 445–463 (1977).
Ehn, J. K. & Mundy, C. J. Assessment of light absorption within highly scattering bottom sea ice from under-ice light measurements: Implications for Arctic ice algae primary production. Limnol. Oceanogr. 58, 893–902 (2013).
Gordon, H. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409 (1989).
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146, 1999–2049 (2020).
Björnsson, B., Steinarsson, A. & Árnason, T. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body weight on growth rate. Aquaculture 271, 216–226 (2007).