Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

Article 
ADS 

Google Scholar
 

Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

Article 
ADS 

Google Scholar
 

Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Moon, J., Cho, Y.-C., Kang, S., Jang, M. & Choi, W. Measuring the scattering tensor of a disordered nonlinear medium. Nat. Phys. 19, 1709–1718 (2023).

Article 

Google Scholar
 

Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).

Article 
ADS 

Google Scholar
 

Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008–1017 (2022).

Article 

Google Scholar
 

Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

Article 
ADS 

Google Scholar
 

Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

Article 
ADS 

Google Scholar
 

Baek, Y., Aguiar, H. B. D. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photon. 17, 1114–1119 (2023).

Article 
ADS 

Google Scholar
 

Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).

Article 

Google Scholar
 

Pai, P., Bosch, J., Kühmayer, M., Rotter, S. & Mosk, A. P. Scattering invariant modes of light in complex media. Nat. Photon. 15, 431–434 (2021).

Article 
ADS 

Google Scholar
 

Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022).

Article 

Google Scholar
 

Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

Article 
ADS 

Google Scholar
 

Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

Article 
MathSciNet 

Google Scholar
 

Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).

Article 

Google Scholar
 

Lib, O. & Bromberg, Y. Quantum light in complex media and its applications. Nat. Phys. 18, 986–993 (2022).

Article 

Google Scholar
 

Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

Article 
ADS 

Google Scholar
 

Zhang, C., Huang, Y., Liu, B., Li, C. & Guo, G. Spontaneous parametric down-conversion sources for multiphoton experiments. Adv. Quantum Technol. 4, 2000132 (2021).

Article 

Google Scholar
 

Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).

Article 
ADS 

Google Scholar
 

Takanashi, N. et al. All-optical phase-sensitive detection for ultra-fast quantum computation. Opt. Express 28, 34916–34926 (2020).

Article 
ADS 

Google Scholar
 

Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).

Article 
ADS 

Google Scholar
 

He, G. S. Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron. 26, 131–191 (2002).

Article 
ADS 

Google Scholar
 

Wright, L. G., Wu, F. O., Christodoulides, D. N. & Wise, F. W. Physics of highly multimode nonlinear optical systems. Nat. Phys. 18, 1018–1030 (2022).

Article 

Google Scholar
 

Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

Article 
ADS 

Google Scholar
 

Roh, C., Gwak, G., Yoon, Y.-D. & Ra, Y.-S. Generation of three-dimensional cluster entangled state. Nat. Photon. 19, 526–532 (2025).

Article 
ADS 

Google Scholar
 

Presutti, F. et al. Highly multimode visible squeezed light with programmable spectral correlations through broadband up-conversion. Preprint at https://arxiv.org/abs/2401.06119 (2024).

Barakat, I. et al. Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification. Opt. Quantum 3, 36 (2025).

Article 

Google Scholar
 

Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

Article 
ADS 

Google Scholar
 

Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

Article 
ADS 

Google Scholar
 

Kovalenko, O. et al. Frequency-multiplexed entanglement for continuous-variable quantum key distribution. Photon. Res. 9, 2351–2359 (2021).

Article 

Google Scholar
 

Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).

Article 
ADS 

Google Scholar
 

Roman-Rodriguez, V. et al. Multimode squeezed state for reconfigurable quantum networks at telecommunication wavelengths. Phys. Rev. Res. 6, 043113 (2024).

Article 

Google Scholar
 

Notarnicola, M. N., Cieciuch, F. & Jarzyna, M. Continuous-variable quantum key distribution over multispan links employing phase-insensitive and phase-sensitive amplifiers. New J. Phys. 26, 043015 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

Article 
ADS 

Google Scholar
 

Frascella, G. et al. Wide-field SU(1,1) interferometer. Optica 6, 1233–1236 (2019).

Article 

Google Scholar
 

Thekkadath, G. S., Bell, B. A., Patel, R. B., Kim, M. S. & Walmsley, I. A. Measuring the joint spectral mode of photon pairs using intensity interferometry. Phys. Rev. Lett. 128, 023601 (2022).

Article 
ADS 

Google Scholar
 

Huo, N. et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett. 124, 213603 (2020).

Article 
ADS 

Google Scholar
 

Ra, Y.-S., Jacquard, C., Dufour, A., Fabre, C. & Treps, N. Tomography of a mode-tunable coherent single-photon subtractor. Phys. Rev. X 7, 031012 (2017).


Google Scholar
 

Ansari, V., Harder, G., Allgaier, M., Brecht, B. & Silberhorn, C. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).

Article 
ADS 

Google Scholar
 

Fang, B., Cohen, O., Liscidini, M., Sipe, J. E. & Lorenz, V. O. Fast and highly resolved capture of the joint spectral density of photon pairs. Optica 1, 281–284 (2014).

Article 
ADS 

Google Scholar
 

Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).

Article 
ADS 
MathSciNet 

Google Scholar
 

Rahimi-Keshari, S. et al. Quantum process tomography with coherent states. New J. Phys. 13, 013006 (2011).

Article 
ADS 

Google Scholar
 

Wang, X.-B. et al. Efficient tomography of quantum-optical Gaussian processes probed with a few coherent states. Phys. Rev. A 88, 022101 (2013).

Article 
ADS 

Google Scholar
 

Fiurasek, J. Continuous-variable quantum process tomography with squeezed-state probes. Phys. Rev. A 92, 022101–022105 (2015).

Article 
ADS 

Google Scholar
 

Jacob, K. V., Mirasola, A. E., Adhikari, S. & Dowling, J. P. Direct characterization of linear and quadratically nonlinear optical systems. Phys. Rev. A 98, 052327 (2018).

Article 
ADS 

Google Scholar
 

Teo, Y. S., Park, K., Shin, S., Jeong, H. & Marek, P. Highly accurate gaussian process tomography with geometrical sets of coherent states. New J. Phys. 23, 063024 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Fedorov, I. A., Fedorov, A. K., Kurochkin, Y. V. & Lvovsky, A. I. Tomography of a multimode quantum black box. New J. Phys. 17, 043063 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

O’Brien, J. et al. Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004).

Article 
ADS 

Google Scholar
 

Kupchak, C., Rind, S., Jordaan, B. & Figueroa, E. Quantum process tomography of an optically-controlled kerr non-linearity. Sci. Rep. 5, 16581 (2015).

Article 
ADS 

Google Scholar
 

Roh, C., Gwak, G. & Ra, Y.-S. Robust squeezed light against mode mismatch using a self imaging optical parametric oscillator. Sci. Rep. 11, 18991 (2021).

Article 
ADS 

Google Scholar
 

Walschaers, M., Ra, Y.-S. & Treps, N. Mode-dependent-loss model for multimode photon-subtracted states. Phys. Rev. A 100, 023828 (2019).

Article 
ADS 

Google Scholar
 

Caruso, F., Eisert, J., Giovannetti, V. & Holevo, A. S. Multi-mode bosonic Gaussian channels. New J. Phys. 10, 083030 (2008).

Article 
ADS 

Google Scholar
 

Ra, Y.-S. et al. Non-Gaussian quantum states of a multimode light field. Nat. Phys. 16, 144–147 (2020).

Article 

Google Scholar
 

Patera, G., Treps, N., Fabre, C. & Valcárcel, G. J. D. Quantum theory of synchronously pumped type I optical parametric oscillators: characterization of the squeezed supermodes. Eur. Phys. J. D 56, 123 (2009).

Article 
ADS 

Google Scholar
 

Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).

Article 
ADS 

Google Scholar
 

Bachmann, D. et al. Highly transmitting modes of light in dynamic atmospheric turbulence. Phys. Rev. Lett. 130, 073801 (2023).

Article 
ADS 

Google Scholar
 

Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012).

Article 
ADS 

Google Scholar
 

Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156 (2023).


Google Scholar
 

Boyer, V., Marino, A. M., Pooser, R. C. & Lett, P. D. Entangled images from four-wave mixing. Science 321, 544–547 (2008).

Article 
ADS 

Google Scholar
Â