Swedo SE, Leckman JF, Rose NR. From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome). Pediatr Therapeut. 2012;2(2):113.


Google Scholar
 

Frankovich J, Thienemann M, Pearlstein J, Crable A, Brown K, Chang K. Multidisciplinary clinic dedicated to treating youth with pediatric acute-onset neuropsychiatric syndrome: presenting characteristics of the first 47 consecutive patients. J Child Adolesc Psychopharmacol. 2015;25(1):38–47.

PubMed 
PubMed Central 

Google Scholar
 

Gromark C, Hesselmark E, Djupedal IG, Silverberg M, Horne A, Harris RA, et al. A two-to-five year follow-up of a pediatric acute-onset neuropsychiatric syndrome cohort. Child Psychiatry Hum Dev. 2022;53(2):354–64.

PubMed 

Google Scholar
 

Masterson EE, Miles K, Schlenk N, Manko C, Ma M, Farhadian B, Chang K, Silverman M, Thienemann M, Frankovich J. Defining clinical course of patients evaluated for pediatric acute-onset neuropsychiatric syndrome (PANS): phenotypic classification based on 10 years of clinical data. Dev Neurosci. 2025:1–33. https://doi.org/10.1159/000545598.

Chang K, Frankovich J, Cooperstock M, Cunningham MW, Latimer ME, Murphy TK, et al. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS consensus conference. J Child Adolesc Psychopharmacol. 2015;25(1):3–13.

PubMed 
PubMed Central 

Google Scholar
 

Vreeland A, Thienemann M, Cunningham M, Muscal E, Pittenger C, Frankovich J. Neuroinflammation in obsessive-compulsive disorder: Sydenham chorea, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, and pediatric acute onset neuropsychiatric syndrome. Psychiatr Clin North Am. 2023;46(1):69–88.

PubMed 

Google Scholar
 

Gagliano A, Carta A, Tanca MG, Sotgiu S. Pediatric acute-onset neuropsychiatric syndrome: current perspectives. Neuropsychiatr Dis Treat. 2023. https://doi.org/10.2147/NDT.S362202.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leonardi L, Perna C, Bernabei I, Fiore M, Ma M, Frankovich J, et al. Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with Streptococcal infections (PANDAS): immunological features underpinning controversial entities. Children (Basel). 2024;11(9):1043.

PubMed 

Google Scholar
 

Murphy TK, Patel PD, McGuire JF, Kennel A, Mutch PJ, Parker-Athill EC, et al. Characterization of the pediatric acute-onset neuropsychiatric syndrome phenotype. J Child Adolesc Psychopharmacol. 2015;25(1):14–25.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gromark C, Harris RA, Wickström R, Horne A, Silverberg-Mörse M, Serlachius E, et al. Establishing a pediatric Acute-Onset neuropsychiatric syndrome clinic: baseline clinical features of the pediatric Acute-Onset neuropsychiatric syndrome cohort at Karolinska Institutet. J Child Adolesc Psychopharmacol. 2019;29(8):625–33.

PubMed 
PubMed Central 

Google Scholar
 

Johnson M, Fernell E, Preda I, Wallin L, Fasth A, Gillberg C, et al. Paediatric acute-onset neuropsychiatric syndrome in children and adolescents: an observational cohort study. The Lancet Child & Adolescent Health. 2019;3(3):175–80.


Google Scholar
 

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38.

CAS 
PubMed 

Google Scholar
 

Masterson EE, Gavin JM. Baseline characteristics of children in the international PANS registry (IPR) epidemiology study. BMJ Open. 2024;14(1):e072743.

PubMed 
PubMed Central 

Google Scholar
 

Gao J, Chan A, Willett T, Farhadian B, Silverman M, Tran P, et al. Sex and aggression characteristics in a cohort of patients with pediatric acute-onset neuropsychiatric syndrome. J Child Adolesc Psychopharmacol. 2022;32(8):444–52.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Calaprice D, Tona J, Parker-Athill EC, Murphy TK. A survey of pediatric acute-onset neuropsychiatric syndrome characteristics and course. J Child Adolesc Psychopharmacol. 2017;27(7):607–18.

PubMed 

Google Scholar
 

Ma M, Masterson EE, Gao J, Karpel H, Chan A, Pooni R, et al. Development of autoimmune diseases among children with pediatric acute-onset neuropsychiatric syndrome. JAMA Netw Open. 2024;7(7):e2421688-2421688.

PubMed 
PubMed Central 

Google Scholar
 

Zheng J, Frankovich J, McKenna ES, Rowe NC, MacEachern SJ, Ng NN, et al. Association of pediatric acute-onset neuropsychiatric syndrome with microstructural differences in brain regions detected via diffusion-weighted magnetic resonance imaging. JAMA Netw Open. 2020;3(5):e204063-204063.

PubMed 
PubMed Central 

Google Scholar
 

Kumar A, Williams MT, Chugani HT. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with Streptococcal infection and tourette syndrome: a positron emission tomographic (PET) study using 11 C-[R]-PK11195. J Child Neurol. 2015;30(6):749–56.

PubMed 

Google Scholar
 

Giedd JN, Rapoport JL, Garvey MA, Perlmutter S, Swedo SE. MRI assessment of children with obsessive-compulsive disorder or tics associated with streptococcal infection. Am J Psychiatry. 2000;157(2):281–3.

CAS 
PubMed 

Google Scholar
 

Cabrera B, Romero-Rebollar C, Jiménez-Ángeles L, Genis-Mendoza AD, Flores J, Lanzagorta N, Arroyo M, de la Fuente-Sandoval C, Santana D, Medina-Bañuelos V, et al. Neuroanatomical features and its usefulness in classification of patients with PANDAS. CNS Spectr. 2019;24(5):533–43.

PubMed 

Google Scholar
 

Gaughan T, Buckley A, Hommer R, Grant P, Williams K, Leckman JF, et al. Rapid eye movement sleep abnormalities in children with pediatric acute-onset neuropsychiatric syndrome (PANS). J Clin Sleep Med. 2016;12(7):1027–32.

PubMed 
PubMed Central 

Google Scholar
 

Santoro JD, Frankovich J, Bhargava S. Continued presence of period limb movements during REM sleep in patients with chronic static pediatric acute-onset neuropsychiatric syndrome (PANS). J Clin Sleep Med. 2018;14(7):1187–92.

PubMed 
PubMed Central 

Google Scholar
 

Gagliano A, Puligheddu M, Ronzano N, Congiu P, Tanca MG, Cursio I, et al. Artificial neural networks analysis of polysomnographic and clinical features in pediatric Acute-Onset neuropsychiatric syndrome (PANS): from sleep alteration to brain fog. Nat Sci Sleep. 2021;13:1209–24.

PubMed 
PubMed Central 

Google Scholar
 

Congiu P, Gagliano A, Carucci S, Lanza G, Ferri R, Puligheddu M. REM sleep Atonia in patients with pediatric acute-onset neuropsychiatric syndrome (PANS): implications for pathophysiology. J Clin Sleep Med. 2024. https://doi.org/10.5664/jcsm.11544.

Zebrack JE, Gao J, Verhey B, Tian L, Stave C, Farhadian B, et al. Neurological soft signs at presentation in patients with pediatric acute-onset neuropsychiatric syndrome. JAMA Netw Open. 2025;8(3):e250314.

PubMed 
PubMed Central 

Google Scholar
 

Xu J, Frankovich J, Liu RJ, Thienemann M, Silverman M, Farhadian B, et al. Elevated antibody binding to striatal cholinergic interneurons in patients with pediatric acute-onset neuropsychiatric syndrome. Brain Behav Immun. 2024;122:241–55.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, Duman RS, Williams K, Swedo S, Pittenger C. Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity. Am J Psychiatry. 2021;178(1):48–64.

PubMed 

Google Scholar
 

Frick LR, Rapanelli M, Jindachomthong K, Grant P, Leckman JF, Swedo S, et al. Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum. Brain Behav Immun. 2018;69:304–11.

CAS 
PubMed 

Google Scholar
 

Chain JL, Alvarez K, Mascaro-Blanco A, Reim S, Bentley R, Hommer R, Grant P, Leckman JF, Kawikova I, Williams K, et al. Autoantibody biomarkers for basal ganglia encephalitis in Sydenham chorea and pediatric autoimmune neuropsychiatric disorder associated with Streptococcal infections. Front Psychiatry. 2020;11:564.

PubMed 
PubMed Central 

Google Scholar
 

Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37(9):2076–87.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yaddanapudi K, Hornig M, Serge R, De Miranda J, Baghban A, Villar G, et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol Psychiatry. 2010;15(7):712–26.

CAS 
PubMed 

Google Scholar
 

Kirvan CA, Swedo SE, Snider LA, Cunningham MW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J Neuroimmunol. 2006;179(1–2):173–9.

CAS 
PubMed 

Google Scholar
 

Cox CJ, Zuccolo AJ, Edwards EV, Mascaro-Blanco A, Alvarez K, Stoner J, Chang K, Cunningham MW. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2015;25(1):76–85.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cox CJ, Sharma M, Leckman JF, Zuccolo J, Zuccolo A, Kovoor A, et al. Brain human monoclonal autoantibody from Sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J Immunol. 2013;191(11):5524–41.

CAS 
PubMed 

Google Scholar
 

Menendez CM, Zuccolo J, Swedo SE, Reim S, Richmand B, Ben-Pazi H, Kovoor A, Cunningham MW. Dopamine receptor autoantibody signaling in infectious sequelae differentiates movement versus neuropsychiatric disorders. JCI Insight. 2024;9(21):e164762.

PubMed 
PubMed Central 

Google Scholar
 

Ben-Pazi H, Stoner JA, Cunningham MW. Dopamine receptor autoantibodies correlate with symptoms in Sydenham’s chorea. PLoS ONE. 2013;8(9):e73516.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodríguez N, Lázaro L, Ortiz AE, Morer A, Martínez-Pinteño A, Segura AG, et al. Gene expression study in monocytes: evidence of inflammatory dysregulation in early-onset obsessive-compulsive disorder. Transl Psychiatry. 2022;12(1):1–10.


Google Scholar
 

Rodríguez N, Morer A, González-Navarro EA, Serra-Pages C, Boloc D, Torres T, et al. Inflammatory dysregulation of monocytes in pediatric patients with obsessive-compulsive disorder. J Neuroinflammation. 2017;14(1):261.

PubMed 
PubMed Central 

Google Scholar
 

Melamed I, Rahman S, Pein H, Heffron M, Frankovich J, Kreuwel H, Mellins ED. IVIG response in pediatric acute-onset neuropsychiatric syndrome correlates with reduction in pro-inflammatory monocytes and neuropsychiatric measures. Front Immunol. 2024;15:1383973.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaudillière B, Fragiadakis GK, Bruggner RV, Nicolau M, Finck R, Tingle M, et al. Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med. 2014;6(255):ra255131-255131.


Google Scholar
 

Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–23.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cormican S, Griffin MD. Human monocyte subset distinctions and function: insights from gene expression analysis. Front Immunol. 2020;11:1070.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19061801.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001;194(9):1361–74.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible treatments: all options on the table. Int Immunopharmacol. 2022;113(Pt A):109325.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Panek CA, Ramos MV, Mejias MP, Abrey-Recalde MJ, Fernandez-Brando RJ, Gori MS, Salamone GV, Palermo MS. Differential expression of the fractalkine chemokine receptor (CX 3 CR1) in human monocytes during differentiation. Cell Mol Immunol. 2015;12(6):669–80.

CAS 
PubMed 

Google Scholar
 

Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.

PubMed 
PubMed Central 

Google Scholar
 

Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience. 2015;289:429–42.

CAS 
PubMed 

Google Scholar
 

Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248(1):228–39.

PubMed 
PubMed Central 

Google Scholar
 

Mareckova H, Havrdova E, Krasulova E, Vankova Z, Koberova M, Šterzl I. Natalizumab in the treatment of patients with multiple sclerosis: first experience. Ann N Y Acad Sci. 2007;1110(1):465–73.

CAS 
PubMed 

Google Scholar
 

Stüve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S, et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2006;59(5):743–7.

PubMed 

Google Scholar
 

Levesque MC, Heinly CS, Whichard LP, Patel DD. Cytokine‐regulated expression of activated leukocyte cell adhesion molecule (CD166) on monocyte‐lineage cells and in rheumatoid arthritis synovium. Arthritis Rheum. 1998;41(12):2221–9.

CAS 
PubMed 

Google Scholar
 

Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91(3):401–15.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008;9(2):137.

CAS 
PubMed 

Google Scholar
 

Macaubas C, Nguyen K, Deshpande C, Phillips C, Peck A, Lee T, et al. Distribution of circulating cells in systemic juvenile idiopathic arthritis across disease activity states. Clin Immunol. 2010;134(2):206–16.

CAS 
PubMed 

Google Scholar
 

Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184(4):1000–e10161027.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC. Participants in the 1st human cell atlas J: emptydrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20(1):63.

PubMed 
PubMed Central 

Google Scholar
 

Griffiths JA, Richard AC, Bach K, Lun ATL, Marioni JC. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun. 2018;9(1):2667.

PubMed 
PubMed Central 

Google Scholar
 

Galfrè SG, Morandin F, Pietrosanto M, Cremisi F, Helmer-Citterich M. COTAN: scRNA-seq data analysis based on gene co-expression. NAR Genomics Bioinform. 2021;3(3):lqab072.


Google Scholar
 

McGinnis CS, Murrow LM, Gartner ZJ. Doubletfinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329-e337324.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2024;42(2):293–304.

CAS 
PubMed 

Google Scholar
 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bongen E, Lucian H, Khatri A, Fragiadakis GK, Bjornson ZB, Nolan GP, Utz PJ, Khatri P. Sex differences in the blood transcriptome identify robust changes in immune cell proportions with aging and influenza infection. Cell Rep. 2019;29(7):1961–73. e1964.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports. 2014;6. https://doi.org/10.12703/P6-13.

Bernardo D, Marin A, Fernández-Tomé S, Montalban-Arques A, Carrasco A, Tristán E, Ortega-Moreno L, Mora-Gutiérrez I, Díaz-Guerra A, Caminero-Fernández R. Human intestinal pro-inflammatory CD11c high CCR2 + CX3CR1 + macrophages, but not their tolerogenic CD11c – CCR2 – CX3CR1 – counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol. 2018;11(4):1114.

CAS 
PubMed 

Google Scholar
 

Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109–18.

CAS 
PubMed 

Google Scholar
 

Lee JS, Jeong S-J, Kim S, Chalifour L, Yun TJ, Miah MA, et al. Conventional dendritic cells impair recovery after myocardial infarction. J Immunol. 2018;201(6):1784–98.

CAS 
PubMed 

Google Scholar
 

Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, Davis MM, Nolan GP, Idoyaga J. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity. 2017;47(6):1037–50. e1036.

PubMed 
PubMed Central 

Google Scholar
 

van Beek JJ, Gorris MA, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, de Vries IJM, Bakdash G. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016;5(10):e1227902.

PubMed 
PubMed Central 

Google Scholar
 

Minoda Y, Virshup I, Leal Rojas I, Haigh O, Wong Y, Miles JJ, Wells CA, Radford KJ. Human CD141 + dendritic cell and CD1c + dendritic cell undergo concordant early genetic programming after activation in humanized mice in vivo. Front Immunol. 2017;8:1419.

PubMed 
PubMed Central 

Google Scholar
 

Cai G, Du M, Bossé Y, Albrecht H, Qin F, Luo X, et al. SARS-CoV-2 impairs dendritic cells and regulates DC-SIGN gene expression in tissues. Int J Mol Sci. 2021;22(17):9228.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.

PubMed 

Google Scholar
 

Platt MP, Agalliu D, Cutforth T. Hello from the other side: how autoantibodies circumvent the Blood-Brain barrier in autoimmune encephalitis. Front Immunol. 2017;8:442.

PubMed 
PubMed Central 

Google Scholar
 

Platt MP, Bolding KA, Wayne CR, Chaudhry S, Cutforth T, Franks KM, et al. Th17 lymphocytes drive vascular and neuronal deficits in a mouse model of postinfectious autoimmune encephalitis. Proc Natl Acad Sci U S A. 2020;117(12):6708–16.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dale RC, Merheb V, Pillai S, Wang D, Cantrill L, Murphy TK, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135(Pt 11):3453–68.

PubMed 

Google Scholar
 

Kim W-K, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol. 2006;168(3):822–34.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol. 2024;115(4):589–606.

CAS 
PubMed 

Google Scholar
 

Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, Baker W, Papadopoulos Z, Drieu A, Blackburn S. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373(6553):eabf7844.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol. 2019. https://doi.org/10.1126/sciimmunol.aav0492.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14(+)CD16(+) monocyte subset during multiple sclerosis. Immunol Cell Biol. 2014;92(6):509–17.

CAS 
PubMed 

Google Scholar
 

Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F, Battaglia G, Busceti CL, Nicoletti F, Vonsattel JG, et al. Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in huntington disease. Mol Brain. 2013;6(1):55.

PubMed 
PubMed Central 

Google Scholar
 

Vogel DY, Kooij G, Heijnen PD, Breur M, Peferoen LA, van der Valk P, et al. GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur J Immunol. 2015;45(6):1808–19.

CAS 
PubMed 

Google Scholar
 

Janssens K, Slaets H, Hellings N. Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis. Ann N Y Acad Sci. 2015;1351:52–60.

CAS 
PubMed 

Google Scholar
 

Fiedler SE, George JD, Love HN, Kim E, Spain R, Bourdette D, Salinthone S. Analysis of IL-6, IL-1β and TNF-α production in monocytes isolated from multiple sclerosis patients treated with disease modifying drugs. J Syst Integr Neurosci. 2017;3(3). https://doi.org/10.15761/JSIN.1000166.

Roth J, Rummel C, Harré E-M, Voss T, Mütze J, Gerstberger R, et al. Is interleukin-6 the necessary pyrogenic cytokine? J Therm Biol. 2004;29(7):383–9.

CAS 

Google Scholar
 

Choi BR, Johnson KR, Maric D, McGavern DB. Monocyte-derived IL-6 programs microglia to rebuild damaged brain vasculature. Nat Immunol. 2023;24(7):1110–23.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU. Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res. 2002;69(3):418–26.

CAS 
PubMed 

Google Scholar
 

Vogel DY, Heijnen PD, Breur M, de Vries HE, Tool AT, Amor S, Dijkstra CD. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J Neuroinflamm. 2014;11(1):1–11.


Google Scholar
 

Mangaonkar AA, Tande AJ, Bekele DI. Differential diagnosis and workup of monocytosis: a systematic approach to a common hematologic finding. Curr Hematol Malig Rep. 2021;16(3):267–75.

PubMed 
PubMed Central 

Google Scholar
 

Agrawal S, Salazar J, Tran TM, Agrawal A. Sex-related differences in innate and adaptive immune responses to SARS-CoV-2. Front Immunol. 2021;12:739757.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chamekh M, Deny M, Romano M, Lefèvre N, Corazza F, Duchateau J, Casimir G. Differential susceptibility to infectious respiratory diseases between males and females linked to sex-specific innate immune inflammatory response. Front Immunol. 2017;8:1806.

PubMed 
PubMed Central 

Google Scholar
 

Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56:308–21.

CAS 
PubMed 

Google Scholar
 

Ferri SL, Abel T, Brodkin ES. Sex differences in autism spectrum disorder: a review. Curr Psychiatry Rep. 2018;20:1–17.


Google Scholar
 

Flanagan EP, Geschwind MD, Lopez-Chiriboga AS, Blackburn KM, Turaga S, Binks S, Zitser J, Gelfand JM, Day GS, Dunham SR. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023;80(1):30–9.

PubMed 

Google Scholar
 

Mirsafian H, Ripen AM, Leong W-M, Manaharan T, Mohamad SB, Merican AF. Transcriptome landscape of human primary monocytes at different sequencing depth. Genomics. 2017;109(5–6):463–70.

CAS 
PubMed 

Google Scholar
 

Kay E, Gomez-Garcia L, Woodfin A, Scotland RS, Whiteford JR. Sexual dimorphisms in leukocyte trafficking in a mouse peritonitis model. J Leukoc Biol. 2015;98(5):805–17.

CAS 
PubMed 

Google Scholar
 

Marzaioli V, Canavan M, Floudas A, Wade SC, Low C, Veale DJ, Fearon U. Monocyte-derived dendritic cell differentiation in inflammatory arthritis is regulated by the JAK/STAT axis via NADPH oxidase regulation. Front Immunol. 2020;11:1406.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perdiguero EG, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, De Bruijn MF, Geissmann F. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51.

CAS 

Google Scholar
 

Frankovich J, Leibold CM, Farmer C, Sainani K, Kamalani G, Farhadian B, Willett T, Park JM, Sidell D, Ahmed S et al. The burden of caring for a child or adolescent with pediatric Acute-Onset neuropsychiatric syndrome (PANS): an observational longitudinal study. J Clin Psychiatry. 2018;80(1). https://doi.org/10.4088/JCP.17m12091.

Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, et al. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res. 2025;20(3):779–93.

CAS 
PubMed 

Google Scholar