Bachtrog, D. et al. Sex Determination: why so many ways of doing it?. PLOS Biol. 12, e1001899 (2014).
Swanson, C. P. Cytology and Cytogenetics (St Martin’s Press, New York, 1957).
Kitano, J. & Peichel, C. L. Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fish. 94, 549–558 (2012).
Sember, A. et al. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos. Trans. R. Soc. B. 376, 20200098 (2021).
Pennell, M. W. et al. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11, e1005237 (2015).
Amaral, P.J. Proechimys (Rodentia, Echimyidae): characterization and taxonomic considerations of a form with a very low diploid number and a multiple sex chromosome system. BMC Genet 14, 21 (2013).
Steinberg, E. R. et al. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J. Evol. Biol. 35, 2745–2761 (2022).
Grabowska-Joachimiak, A. et al. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res. 23, 187–197 (2015).
Traut, W., Sahara, K. & Marec, F. Sex Chromosomes and sex determination in Lepidoptera. Sex. Dev. 1, 332–346 (2008).
Sahara, K., Yoshido, A. & Traut, W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 20, 83–94 (2012).
Nguyen, P. & Carabajal Paladino, L. On the neo-sex chromosomes of Lepidoptera. In Evolutionary Biology: Convergent Evolution, Evolution of Complex Traits, Concepts and Methods (ed. Pontarotti, P.) 171–185 (Springer International Publishing, Cham, 2016).
Gruetzner, F., Ashley, T., Rowell, D. M. & Marshall Graves, J. A. How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115, 75–88 (2006).
Gazoni, T. et al. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127, 269–278 (2018).
Xavier, C., Soares, R. V. S., Amorim, I. C., Cabral-de-Mello, D. C. & de Cássia de Moura, R. Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae). Chromosome Res. 26, 163–178 (2018).
da Silva, D. S., da Silva Filho, H. F., Cioffi, M. B., de Oliveira, E. H. C. & Gomes, A. J. B. Comparative cytogenetics in four Leptodactylus species (Amphibia, Anura, Leptodactylidae): evidence of inner chromosomal diversification in highly conserved karyotypes. Cytogenet. Genome Res. 161, 52–62 (2021).
Zhou, Y. et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 592, 756–762 (2021).
Rens, W. et al. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 8, 1–21 (2007).
Ferguson-Smith, M. A. & Rens, W. The unique sex chromosome system in platypus and echidna. Russ. J. Genet. 46, 1160–1164 (2010).
Noronha, R. C. R. et al. Meiotic analyses show adaptations to maintenance of fertility in X1Y1X2Y2X3Y3X4Y4X5Y5 system of Amazon frog Leptodactylus pentadactylus (Laurenti, 1768). Sci. Rep. 10, 1–13 (2020).
Siqueira-Jr, S., Ananias, F. & Recco-Pimentel, S. M. Cytogenetics of three Brazilian species of Eleutherodactylus (Anura, Leptodactylidae) with 22 chromosomes and re-analysis of multiple translocations in E. binotatus. Genet. Mol. Biol. 27, 363–372 (2004).
Miura, I. et al. Evolution of a multiple sex-chromosome system by three-sequential translocations among potential sex-chromosomes in the Taiwanese frog Odorrana swinhoana. Cells 10, 661 (2021).
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
Farré, M. et al. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res. 29, 576–589 (2019).
Farré, M., Bosch, M., López-Giráldez, F., Ponsà , M. & Ruiz-Herrera, A. Assessing the role of tandem repeats in shaping the genomic architecture of great apes. PLoS ONE 6, e27239 (2011).
Burssed, B., Zamariolli, M., Bellucco, F. T. & Melaragno, M. I. Mechanisms of structural chromosomal rearrangement formation. Mol. Cytogenet. 15, 1–15 (2022).
Gebert, D. et al. Analysis of 30 chromosome-level Drosophila genome assemblies reveals dynamic evolution of centromeric satellite repeats. Genome Biol. 26, 63 (2025).
Wang, D. et al. Repeated turnovers keep sex chromosomes young in willows. Genome Biol. 23, 200 (2022).
Boman, J., Näsvall, K., Vila, R., Wiklund, C. & Backström, N. Evolution of hybrid inviability associated with chromosome fusions. Mol. Ecol. e17672 (2025).
Lande, R. The Expected fixation rate of chromosomal inversions. Evolution 38, 743–752 (1984).
Charlesworth, D. & Wright, S. I. Breeding systems and genome evolution. Curr. Opin. Genet. Dev. 11, 685–690 (2001).
Gazoni, T. et al. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations. BMC Genet. 13, 1–16 (2012).
Silva, A. P., Haddad, C. F. & Kasahara, S. Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 103, 25–38 (2000).
de Oliveira, B., Moraes, M. S. S., Dertônio, D., Faria, R. G. & Pantaleão, S. M. Cytogenetic study of Leptodactylus fuscus and L. latrans (Anura: Leptodactylidae) from the semiarid Brazilian Caatinga scrublands. Phyllomedusa 12, 125–133 (2013).
Kosch, T. A. et al. Comparative analysis of amphibian genomes: an emerging resource for basic and applied research. Mol. Ecol. Resour. 25, e14025 (2025).
Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 3, 1632–1641 (2019).
Zhou, Y. et al. Chromosome-level echidna genome illuminates evolution of multiple sex chromosome system in monotremes. GigaScience 14, giae112 (2025).
MarÃn-GarcÃa, C. et al. Multiple genomic landscapes of recombination and genomic divergence in wild populations of house mice—the role of chromosomal fusions and Prdm9. Mol. Biol. Evol. 41, msae063 (2024).
Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. Genes 12, 483 (2021).
Mawaribuchi, S., Ito, M., Ogata, M., Yoshimura, Y. & Miura, I. Parallel evolution of sex-linked genes across XX/XY and ZZ/ZW sex chromosome systems in the frog Glandirana rugosa. Genes 14, 257 (2023).
Ohta, S. Sex Determining mechanism in Buergeria buergeri (SCHLEGEL): I. Heterozygosity of chromosome pair No. 7 in the female. Sci. Rep. Lab. Amphibian Biol. 8, 29–43 (1986).
Palacios-Gimenez, O. M. et al. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 7, 1–11 (2017).
Toma, G. A. et al. Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci. Rep. 14, 1–13 (2024).
de Moraes, R. L. R. et al. Chromosomal rearrangements and satellite DNAs: extensive chromosome reshuffling and the evolution of neo-sex chromosomes in the genus Pyrrhulina (Teleostei; Characiformes). Int. J. Mol. Sci. 24, 13654 (2023).
Gatto, K. P., Mattos, J. V., Seger, K. R. & Lourenço, L. B. Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front. Genet. 9, 371621 (2018).
Louzada, S. et al. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron 39, 1149–1155 (2008).
Escudero, M., Marques, A., Lucek, K. & Hipp, A. L. Genomic hotspots of chromosome rearrangements explain conserved synteny despite high rates of chromosome evolution in a holocentric lineage. Mol. Ecol. 33, e17086 (2024).
Deon, G. A. et al. The role of satellite DNAs in the chromosomal rearrangements and the evolution of the rare XY1Y2 sex system in Harttia (Siluriformes: Loricariidae). J. Hered. 115, 541–551 (2024).
Toups, M. A., Rodrigues, N., Perrin, N. & Kirkpatrick, M. A reciprocal translocation radically reshapes sex-linked inheritance in the common frog. Mol. Ecol. 28, 1877–1889 (2019).
Garagna, S., Zuccotti, M., Capanna, E. & Redi, C. A. High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet. Cell Genet. 96, 125–129 (2002).
Klein, S. J. & O’Neill, R. J. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 26, 5–23 (2018).
Romano, C. N. & Fanti, L. Transposable elements: major players in shaping genomic and evolutionary patterns. Cells 11, 1048 (2022).
Charlesworth, B., Langley, C. H. & Stephan, W. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112, 947–962 (1986).
Yamamoto, M. Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic pairing. Chromosoma 72, 293–328 (1979).
Ezaz, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol. 2014, 104683 (2014).
Kabir, A. Repeated translocation of a supergene underlying rapid sex chromosome turnover in Takifugu pufferfish. Proc Natl Acad Sci USA 119 e2121469119 (2022).
Hobza, R. et al. Impact of repetitive elements on the Y chromosome formation in plants. Genes 8, 302 (2017).
Kretschmer, R. et al. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma 131, 29–45 (2022).
Bitencourt, J. A., Sampaio, I., Ramos, R. T. C., Vicari, M. R. & Affonso, P. R. A. de M. First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2×2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish 14, 90–95 (2017).
Almeida, J. S., Migues, V. H., Diniz, D. & Affonso, P. R. A. M. A unique sex chromosome system in the knifefish Gymnotus bahianus with Inferences about chromosomal evolution of Gymnotidae. J. Hered. 106, 177–183 (2015).
Marajó, L. et al. Chromosomal rearrangements and the first indication of an ♀X1 ×1 X2 ×2 /♂X1 ×2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). J. Fish Biol. 102, 443–454 (2023).
Araújo, L. de et al. Cytogenetic and molecular characterization of Eigenmannia aff. desantanai (Gymnotiformes: Sternopygidae): a first report of system of sex chromosomes ZW1W2/ZZ in Gymnotiformes. Zebrafish 20, 77–85 (2023).
Nokkala, S., Kuznetsova, V. G., Maryanska-Nadachowska, A. & Nokkala, C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. Chromosome Res. 14, 559–565 (2006).
Cioffi, M. et al. The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol. Cytogenet. 5, 28 (2012).
Sciurano, R. B., Rahn, M. I., Rey-Valzacchi, G., Coco, R. & Solari, A. J. The role of asynapsis in human spermatocyte failure. Int. J. Androl. 35, 541–549 (2012).
Pyron, R. A. Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Systematic biology 63, 779–797 (2014).
Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).
Zhang, P., Zhou, H., Chen, Y.-Q., Liu, Y.-F. & Qu, L.-H. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54, 391–400 (2005).
Pyron, R. A. A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst. Biol. 59, 185–194 (2010).
Pyron, R. A. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466–481 (2011).
Galatti, U. Population biology of the frog Leptodactylus pentadactylus in a central Amazonian rainforest. J. Herpetol. 26, 23–31 (1992).
Matveevsky, S. N., Kolomiets, O. L., Shchipanov, N. A. & Pavlova, S. V. Natural male hybrid common shrews with a very long chromosomal multivalent at meiosis appear not to be completely sterile. J. Exp. Zool. B. Mol. Dev. Evol. 342, 45–58 (2024).
Yang, F., O’Brien, P. C. M., Wienberg, J. & Ferguson-Smith, M. A. Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet. Cell Genet. 76, 159–163 (2008).
Yin, Y. et al. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat. Commun. 12, 6858 (2021).
Natri, H. M., Merilä, J. & Shikano, T. The evolution of sex determination associated with a chromosomal inversion. Nat. Commun. 10, 145 (2019).
Dixon, G., Kitano, J. & Kirkpatrick, M. The origin of a new sex chromosome by introgression between two stickleback fishes. Mol. Biol. Evol. 36, 28–38 (2019).
Ogata, M., Suzuki, K., Yuasa, Y. & Miura, I. Sex chromosome evolution from a heteromorphic to a homomorphic system by inter-population hybridization in a frog. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 376, 20200105 (2021).
Kuwana, C., Fujita, H., Tagami, M., Matsuo, T. & Miura, I. Evolution of sex chromosome heteromorphy in geographic populations of the Japanese tago’s brown frog complex. Cytogenet. Genome Res. 161, 23–31 (2021).
Lai, Z. et al. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171, 291–303 (2005).
Chandler, J. M., Jan, C.-C. & Beard, B. H. Chromosomal differentiation among the annual Helianthus species. Syst. Bot. 11, 354–371 (1986).
Merico, V. et al. Chromosomal speciation in mice: a cytogenetic analysis of recombination. Chromosome Res. 21, 523–533 (2013).
Lukhtanov, V. A., Shapoval, N. A., Anokhin, B. A., Saifitdinova, A. F. & Kuznetsova, V. G. Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc. Biol. Sci. 282, 20150157 (2015).
James, S. H. Complex hybridity in Isotoma petraea. Heredity 20, 341–353 (1965).
Simões, P. I., Lima, A. P. & Farias, I. P. Restricted natural hybridization between two species of litter frogs on a threatened landscape in southwestern Brazilian Amazonia. Conserv. Genet. 13, 1145–1159 (2012).
Peek, R. A. et al. Hybridization between two parapatric ranid frog species in the northern Sierra Nevada, California, USA. Mol. Ecol. 28, 4636–4647 (2019).
Fischer, W. J., Koch, W. A. & Elepfandt, A. Sympatry and hybridization between the clawed frogs Xenopus laevis laevis and Xenopus muelleri (Pipidae). J. Zool. 252, 99–107 (2000).
Schmid, M. Chromosome banding in Amphibia. Chromosoma 66, 361–388 (1978).
Ford, C. E. & Hamerton, J. L. A Colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 31, 247–251 (1956).
Sambrook, J. & Russell, D. W. Molecular cloning: a laboratory manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 2001).
Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Knytl, M. & Fornaini, N. R. Measurement of chromosomal arms and FISH reveal complex genome architecture and standardized karyotype of model fish, genus. Carassius. Cells 10, 2343 (2021).
Schneider, R. G. et al. A new frog of the Leptodactylus fuscus species group (Anura: Leptodactylidae), endemic from the South American Gran Chaco. PeerJ 7, e7869 (2019).
Kumar, S. et al. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for adaptive and green computing. Mol. Biol. Evol. 41, msae263 (2024).
Rambaut, A. FigTree v1.4.4 [Computer Software] http://tree.bio.ed.ac.uk/software/figtree/.
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).
Smit, A. F. A. R., Hubley, R. & Green, P. RepeatMasker Open-5.0 http://www.repeatmasker.org (2015).
Goubert, C. Assembly-free detection and quantification of transposable elements with dnaPipeTE. In Transposable Elements 25–43 (Humana, New York, NY, 2023).
Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 6, 1–14 (2016).
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).
Novák, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 11, 1–12 (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).
Pendas, A. M., Moran, P., Freije, J. P. & Garcia-Vazquez, E. Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet. Genome Res. 67, 31–36 (1994).
Cioffi, M. B., Martins, C., Centofante, L., Jacobina, U. & Bertollo, L. A. C. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 125, 132–141 (2009).
Ijdo, J. W., Wells, R. A., Baldini, A. & Reeders, S. T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19, 4780 (1991).
Yano, C. F., Bertollo, L. A. C. & Cioffi, M. de B. Fish-FISH: Molecular cytogenetics in fish species. In Fluorescence in Situ Hybridization (FISH) 429–443 (Springer, 2017).
Zwick, M. S. et al. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40, 138–142 (1997).
Sassi, F. et al. High genetic diversity despite conserved karyotype organization in the giant trahiras from genus Hoplias (Characiformes, Erythrinidae). 12, 252 (2016).