Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: review of top 25 most-studied RNA modifications. Int J Mol Sci. 2022;23(22):13851. https://doi.org/10.3390/ijms232213851.


Google Scholar
 

Kiss T. NEW EMBO member’s review: small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20(14):3617–22. https://doi.org/10.1093/emboj/20.14.3617.


Google Scholar
 

Somme J, Van Laer B, Roovers M, Steyaert J, Versées W, Droogmans L. Characterization of two homologous 2′-O-methyltransferases showing different specificities for their tRNA substrates. RNA. 2014;20:1257–71. https://doi.org/10.1261/rna.044503.114.


Google Scholar
 

Rebane A, Roomere H, Metspalu A. Locations of several novel 2’-O-methylated nucleotides in human 28S rRNA. BMC Mol Biol. 2002;3:1. https://doi.org/10.1186/1471-2199-3-1.


Google Scholar
 

Darzacq X. Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21(11):2746–56. https://doi.org/10.1093/emboj/21.11.2746.


Google Scholar
 

Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7. https://doi.org/10.1016/j.cub.2005.07.029.


Google Scholar
 

Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307:932–5. https://doi.org/10.1126/science.1107130.


Google Scholar
 

Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14:695–8. https://doi.org/10.1038/nmeth.4294.


Google Scholar
 

Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468:452–6. https://doi.org/10.1038/nature09489.


Google Scholar
 

Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature. 2011;469:559–63. https://doi.org/10.1038/nature09688.


Google Scholar
 

Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12:137–43. https://doi.org/10.1038/ni.1979.


Google Scholar
 

Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565:500–4. https://doi.org/10.1038/s41586-018-0841-4.


Google Scholar
 

Gehrig S, Eberle M-E, Botschen F, Rimbach K, Eberle F, Eigenbrod T, et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J Exp Med. 2012;209(2):225–33. https://doi.org/10.1084/jem.20111044.


Google Scholar
 

Rimbach K, Kaiser S, Helm M, Dalpke AH, Eigenbrod T. 2’-O-methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells. J Innate Immun. 2015;7:482–93. https://doi.org/10.1159/000375460.


Google Scholar
 

Huang C, Yu Y-T. Targeted 2′-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo. Mol Cell Biol. 2010;30(18):4368–78. https://doi.org/10.1128/MCB.00384-10.


Google Scholar
 

Dimitrova DG, Teysset L, Carré C. RNA 2′-O-methylation (Nm) modification in human diseases. Genes. 2019;10:117. https://doi.org/10.3390/genes10020117.


Google Scholar
 

Encinar JA, Menendez JA. Potential drugs targeting early innate immune evasion of SARS-Coronavirus 2 via 2’-O-methylation of viral RNA. Viruses. 2020;12:525. https://doi.org/10.3390/v12050525.


Google Scholar
 

Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, et al. RNA modifications in cancer. Br J Cancer. 2023;129:204–21. https://doi.org/10.1038/s41416-023-02275-1.


Google Scholar
 

Gatsiou A, Stellos K. RNA modifications in cardiovascular health and disease. Nat Rev Cardiol. 2023;20:325–46. https://doi.org/10.1038/s41569-022-00804-8.


Google Scholar
 

Paramasivam A. RNA 2′-O-methylation modification and its implication in COVID-19 immunity. Cell Death Discov. 2020;6:118. https://doi.org/10.1038/s41420-020-00358-z.


Google Scholar
 

Krogh N, Jansson MD, Häfner SJ, Tehler D, Birkedal U, Christensen-Dalsgaard M, et al. Profiling of 2′- O -Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 2016;44:7884–95. https://doi.org/10.1093/nar/gkw482.


Google Scholar
 

Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci USA. 2017;114(49):12934–9. https://doi.org/10.1073/pnas.1707674114.


Google Scholar
 

Sharma S, Marchand V, Motorin Y, Lafontaine DLJ. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep. 2017;7:11490. https://doi.org/10.1038/s41598-017-09734-9.


Google Scholar
 

Zhou F, Liu Y, Rohde C, Pauli C, Gerloff D, Köhn M, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19:844–55. https://doi.org/10.1038/ncb3563.


Google Scholar
 

Zhu Y, Pirnie SP, Carmichael GG. High-throughput and site-specific identification of 2′- O -methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA. 2017;23:1303–14. https://doi.org/10.1261/rna.061549.117.


Google Scholar
 

Sun W-J, Li J-H, Liu S, Wu J, Zhou H, Qu L-H, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44:D259–65. https://doi.org/10.1093/nar/gkv1036.


Google Scholar
 

Chen W, Feng P, Tang H, Ding H, Lin H. Identifying 2′-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions. Genomics. 2016;107:255–8. https://doi.org/10.1016/j.ygeno.2016.05.003.


Google Scholar
 

Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: a sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens. J Comput Biol. 2018;25(11):1266–77. https://doi.org/10.1089/cmb.2018.0004.


Google Scholar
 

Tahir M, Tayara H, Chong KT. iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components. J Theor Biol. 2019;465:1–6. https://doi.org/10.1016/j.jtbi.2018.12.034.


Google Scholar
 

Mostavi M, Salekin S, Huang Y. Deep-2’-O-Me: Predicting 2’-O-methylation sites by Convolutional Neural Networks. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. p. 2394–7. https://doi.org/10.1109/EMBC.2018.8512780.

Zhou Y, Cui Q, Zhou Y. NmSEER: a prediction tool for 2’-O-Methylation (Nm) sites based on random forest. In: Huang D-S, Bevilacqua V, Premaratne P, Gupta P, editors. Intelligent computing theories and application. Cham: Springer International Publishing; 2018. p. 893–900. https://doi.org/10.1007/978-3-319-95930-6_90.


Google Scholar
 

Zhou Y, Cui Q, Zhou Y. NmSEER v2.0: a prediction tool for 2′-O-methylation sites based on random forest and multi-encoding combination. BMC Bioinform. 2019;20:690. https://doi.org/10.1186/s12859-019-3265-8.


Google Scholar
 

Li H, Chen L, Huang Z, Luo X, Li H, Ren J, et al. DeepOMe: a web server for the prediction of 2′-O-Me sites based on the hybrid CNN and BLSTM architecture. Front Cell Dev Biol. 2021;9:686894. https://doi.org/10.3389/fcell.2021.686894.


Google Scholar
 

Ao C, Zou Q, Yu L. NmRF: identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences. Brief Bioinform. 2022;23:bbab480. https://doi.org/10.1093/bib/bbab480.


Google Scholar
 

Soylu NN, Sefer E. BERT2OME: prediction of 2′-O-methylation modifications from RNA sequence by transformer architecture based on BERT. IEEE ACM Trans Comput Biol Bioinform. 2023;20(3):2177–89. https://doi.org/10.1109/TCBB.2023.3237769.


Google Scholar
 

Yang Y-H, Ma C-Y, Gao D, Liu X-W, Yuan S-S, Ding H. i2OM: toward a better prediction of 2′-O-methylation in human RNA. Int J Biol Macromol. 2023;239:124247. https://doi.org/10.1016/j.ijbiomac.2023.124247.


Google Scholar
 

Pham NT, Rakkiyapan R, Park J, Malik A, Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2’-O-methylation sites in human RNA. Brief Bioinform. 2023;25:bbad476. https://doi.org/10.1093/bib/bbad476.


Google Scholar
 

Harun-Or-Roshid Md Md, Pham NT, Manavalan B, Kurata H. Meta-2OM: a multi-classifier meta-model for the accurate prediction of RNA 2′-O-methylation sites in human RNA. PLoS ONE. 2024;19:e0305406. https://doi.org/10.1371/journal.pone.0305406.


Google Scholar
 

Geng Y-Q, Lai F-L, Luo H, Gao F. Nmix: a hybrid deep learning model for precise prediction of 2’-O-methylation sites based on multi-feature fusion and ensemble learning. Brief Bioinform. 2024;25:bbae601. https://doi.org/10.1093/bib/bbae601.


Google Scholar
 

Zhang W-Y, Xu J, Wang J, Zhou Y-K, Chen W, Du P-F. KNIndex: a comprehensive database of physicochemical properties for k -tuple nucleotides. Brief Bioinform. 2021;22:bbaa284. https://doi.org/10.1093/bib/bbaa284.


Google Scholar
 

Choi M, Kim H, Han B, Xu N, Lee KM. Channel attention is all you need for video frame interpolation. Proc AAAI Conf Artif Intell. 2020;34:10663–71. https://doi.org/10.1609/aaai.v34i07.6693.


Google Scholar
 

Zhang H, Zhu Y, Wang D, Zhang L, Chen T, Wang Z, et al. A survey on visual Mamba. Appl Sci. 2024;14(13):5683. https://doi.org/10.3390/app14135683.


Google Scholar
 

Lin T, Wang Y, Liu X, Qiu X. A survey of transformers. AI Open. 2022;3:111–32. https://doi.org/10.1016/j.aiopen.2022.10.001.


Google Scholar
 

Yeung M, Sala E, Schönlieb C-B, Rundo L. Unified focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput Med Imaging Graph. 2022;95:102026. https://doi.org/10.1016/j.compmedimag.2021.102026.


Google Scholar
 

Du R, Xie S, Fang Y, Hagino S, Yamamoto S, Moriyama M, et al. Validation of soft labels in developing deep learning algorithms for detecting lesions of myopic maculopathy from optical coherence tomographic images. Asia Pac J Ophthalmol. 2022;11(3):227–36. https://doi.org/10.1097/apo.0000000000000466.


Google Scholar
 

Dave I, Gupta R, Rizve MN, Shah M. TCLR: temporal contrastive learning for video representation. Comput Vis Image Underst. 2022;219:103406. https://doi.org/10.1016/j.cviu.2022.103406.


Google Scholar
 

Wen L, Li X, Gao L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput Appl. 2020;32:6111–24. https://doi.org/10.1007/s00521-019-04097-w.


Google Scholar
 

Zhou D-X. Theory of deep convolutional neural networks: downsampling. Neural Netw. 2020;124:319–27. https://doi.org/10.1016/j.neunet.2020.01.018.


Google Scholar
 

Xuan J, Chen L, Chen Z, Pang J, Huang J, Lin J, et al. RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications. Nucleic Acids Res. 2024;52:D273–84. https://doi.org/10.1093/nar/gkad1070.


Google Scholar
 

Rodríguez P, Bautista MA, Gonzàlez J, Escalera S. Beyond one-hot encoding: lower dimensional target embedding. Image Vis Comput. 2018;75:21–31. https://doi.org/10.1016/j.imavis.2018.04.004.


Google Scholar
 

Nguyen-Vo T-H, Nguyen QH, Do TTT, Nguyen T-N, Rahardja S, Nguyen BP. iPseU-NCP: identifying RNA pseudouridine sites using random forest and NCP-encoded features. BMC Genomics. 2019;20:971. https://doi.org/10.1186/s12864-019-6357-y.


Google Scholar
 

Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, et al. Dnabert-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J. 2023;21:5676–85. https://doi.org/10.1016/j.csbj.2023.11.025.


Google Scholar
 

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53. https://doi.org/10.1186/s40537-021-00444-8.


Google Scholar
 

Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population genetics. J Hum Genet. 2021;66:85–91. https://doi.org/10.1038/s10038-020-00851-4.


Google Scholar
 

Zeng J, Giese TJ, Zhang D, Wang H, York DM. DeePMD-GNN: a DeePMD-kit plugin for external graph neural network potentials. J Chem Inf Model. 2025;65:3154–60. https://doi.org/10.1021/acs.jcim.4c02441.


Google Scholar
 

Salmani Pour Avval S, Eskue ND, Groves RM, Yaghoubi V. Systematic review on neural architecture search. Artif Intell Rev. 2025;58:73. https://doi.org/10.1007/s10462-024-11058-w.


Google Scholar
 

Song Z, Huang D, Song B, Chen K, Song Y, Liu G, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021;12:4011. https://doi.org/10.1038/s41467-021-24313-3.


Google Scholar
 

Song Y, Wang Y, Wang X, Huang D, Nguyen A, Meng J. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Brief Bioinform. 2023;24:bbad105. https://doi.org/10.1093/bib/bbad105.


Google Scholar
 

Zhang Y, Wang Z, Zhang Y, Li S, Guo Y, Song J, et al. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues. Bioinformatics. 2023;39:btad709. https://doi.org/10.1093/bioinformatics/btad709.


Google Scholar
 

Song Y, Song B, Huang D, Nguyen A, Hu L, Meng J, et al. Multimodal zero-shot learning of previously unseen epitranscriptomes from RNA-seq data. Brief Bioinform. 2025;26:bbaf332. https://doi.org/10.1093/bib/bbaf332.


Google Scholar