Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin. 74, 229–263 (2024).


Google Scholar
 

Lorusso, G. & Ruegg, C. New insights into the mechanisms of organ-specific breast cancer metastasis[J]. Semin. Cancer Biol. 22, 226–233 (2012).


Google Scholar
 

Stacker, S. A. et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer[J]. Nat. Rev. Cancer 14, 159–172 (2014).


Google Scholar
 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation[J]. Cell 144, 646–674 (2011).


Google Scholar
 

Lu, X. et al. Predicting features of breast cancer with gene expression patterns[J]. Breast Cancer Res. Treat 108, 191–201 (2008).


Google Scholar
 

Harbeck, N. et al. Breast cancer[J]. Nat. Rev. Dis. Primers 5, 66 (2019).


Google Scholar
 

Ferris, R. L. & Kraus, D. H. Sentinel lymph node biopsy versus selective neck dissection for detection of metastatic oral squamous cell carcinoma[J]. Clin. Exp. Metastasis 29, 693–698 (2012).


Google Scholar
 

Morton, D. L. et al. Sentinel-node biopsy or nodal observation in melanoma[J]. N. Engl. J. Med. 355, 1307–1317 (2006).


Google Scholar
 

Tseng, H. S. et al. Tumor characteristics of breast cancer in predicting axillary lymph node metastasis[J]. Med Sci Monit 20, 1155–1161 (2014).


Google Scholar
 

Gnant, M. et al. Identifying clinically relevant prognostic subgroups of postmenopausal women with node-positive hormone receptor-positive early-stage breast cancer treated with endocrine therapy: a combined analysis of ABCSG-8 and ATAC using the PAM50 risk of recurrence score and intrinsic subtype[J]. Ann. Oncol. 26, 1685–1691 (2015).


Google Scholar
 

Obenauf, A. C. & Massague, J. Surviving at a distance: organ-specific metastasis[J]. Trends Cancer 1, 76–91 (2015).


Google Scholar
 

Nathanson, S. D. et al. Breast cancer metastasis through the lympho-vascular system[J]. Clin. Exp. Metastasis 35, 443–454 (2018).


Google Scholar
 

Li, A. E. et al. A role for reactive oxygen species in endothelial cell anoikis[J]. Circ. Res. 85, 304–310 (1999).


Google Scholar
 

Cao, L. et al. Mitogen-activated protein kinase pathway is pivotal for anoikis resistance in metastatic hepatoma cells[J]. Mol. Med. Rep. 9, 1121–1127 (2014).


Google Scholar
 

Simpson, C. D., Anyiwe, K. & Schimmer, A. D. Anoikis resistance and tumor metastasis[J]. Cancer Lett. 272, 177–185 (2008).


Google Scholar
 

Taddei, M. L. et al. Anoikis: an emerging hallmark in health and diseases[J]. J. Pathol. 226, 380–393 (2012).


Google Scholar
 

Lu, J., Tan, M. & Cai, Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism[J]. Cancer Lett. 356, 156–164 (2015).


Google Scholar
 

Paoli, P., Giannoni, E. & Chiarugi, P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim. Biophys. Acta. 1833, 3481–3498 (2013).


Google Scholar
 

Kim, Y. N. et al. Anoikis resistance: an essential prerequisite for tumor metastasis[J]. Int. J. Cell Biol. 2012, 306879 (2012).


Google Scholar
 

Lee, C. K. et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation[J]. Science 363, 644–649 (2019).


Google Scholar
 

Laerke, H. N. et al. Effect of beta-glucan supplementation on acute postprandial changes in fatty acid profile of lymph and serum in pigs[J]. Int. J. Mol. Sci. 15, 13881–13891 (2014).


Google Scholar
 

Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat. Rev. Cancer 16, 732–749 (2016).


Google Scholar
 

Wang, J. & Li, Y. CD36 tango in cancer: signaling pathways and functions[J]. Theranostics 9, 4893–4908 (2019).


Google Scholar
 

Liu, L. et al. TBL1XR1 promotes lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma[J]. Gut 64, 26–36 (2015).


Google Scholar
 

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research[J]. PLoS Biol. 8, e1000412 (2010).

Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis[J]. J. Cell Biol. 124, 619–626 (1994).


Google Scholar
 

Harris, M. H. & Thompson, C. B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability[J]. Cell Death Differ 7, 1182–1191 (2000).


Google Scholar
 

Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis[J]. Nat. Rev. Cancer 21, 162–180 (2021).


Google Scholar
 

Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer[J]. Cancer Cell 29, 783–803 (2016).


Google Scholar
 

Zhang, X. et al. The role of YAP/TAZ activity in cancer metabolic reprogramming[J]. Mol. Cancer 17, 134 (2018).


Google Scholar
 

Zhao, B. et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)[J]. Genes Dev. 24, 72–85 (2010).


Google Scholar
 

Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling[J]. Cell 150, 780–791 (2012).


Google Scholar
 

Wang, L. et al. YAP and TAZ protect against white adipocyte cell death during obesity[J]. Nat Commun. 11, 5455 (2020).


Google Scholar
 

Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway[J]. Cancer Cell 37, 104–122.e12 (2020).


Google Scholar
 

Anakk, S. et al. Bile acids activate YAP to promote liver carcinogenesis[J]. Cell Rep. 5, 1060–1069 (2013).


Google Scholar
 

Liu, R. et al. Conjugated bile acids promote invasive growth of esophageal adenocarcinoma cells and cancer stem cell expansion via sphingosine 1-phosphate receptor 2-mediated yes-associated protein activation[J]. Am. J. Pathol. 188, 2042–2058 (2018).


Google Scholar
 

Marrapodi, M. & Chiang, J. Y. Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription[J]. J. Lipid Res. 41, 514–520 (2000).


Google Scholar
 

Mottillo, E. P. et al. Genetically-encoded sensors to detect fatty acid production and trafficking[J]. Mol. Metab. 29, 55–64 (2019).


Google Scholar
 

Nakamura, M. T., Yudell, B. E. & Loor, J. J. Regulation of energy metabolism by long-chain fatty acids[J]. Prog. Lipid Res. 53, 124–144 (2014).


Google Scholar
 

Chen, Y. et al. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate[J]. J. Exp. Med. 219, e20211314 (2022).

Liang, Y. et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells[J]. Oncogenesis 7, 98 (2018).


Google Scholar
 

Wang, H. et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol 21, 298–308 (2020).


Google Scholar
 

Zaoui, M. et al. Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density[J]. Cancers 11, 2012 (2019).

Declerck, Y. A. Desmoplasia: a response or a niche?[J]. Cancer Discov. 2, 772–774 (2012).


Google Scholar
 

Seewaldt, V. L. Cancer: destiny from density[J]. Nature 490, 490–491 (2012).


Google Scholar
 

Shang, C. et al. LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism[J]. Cancer Res 78, 877–890 (2018).


Google Scholar
 

Hardy, S., Langelier, Y. & Prentki, M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects[J]. Cancer Res. 60, 6353–6358 (2000).


Google Scholar
 

Houvenaeghel, G. et al. Axillary lymph node micrometastases decrease triple-negative early breast cancer survival[J]. Br. J. Cancer 115, 1024–1031 (2016).


Google Scholar
 

Liu, S. et al. S100A4 enhances protumor macrophage polarization by control of PPAR-gamma-dependent induction of fatty acid oxidation[J]. J. Immunother. Cancer 9, e002548 (2021)..

Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors[J]. Immunity 54, 1561–1577.e7 (2021).


Google Scholar
 

Oh, D. S. & Lee, H. K. Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells[J]. Autophagy 15, 2091–2106 (2019).


Google Scholar
 

Dey, A., Varelas, X. & Guan, K. L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine[J]. Nat. Rev. Drug Discov. 19, 480–494 (2020).


Google Scholar
 

Yan, F. et al. The posttranslational modifications of Hippo-YAP pathway in cancer[J]. Biochim Biophys Acta Gen Subj 1864, 129397 (2020).


Google Scholar
 

Cunningham, R. & Hansen, C. G. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer[J]. Clin. Sci. 136, 197–222 (2022).


Google Scholar
 

Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis[J]. Genes Dev. 26, 54–68 (2012).


Google Scholar
 

Shen, J. et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer[J]. J. Exp. Clin. Cancer Res. 37, 175 (2018).


Google Scholar
 

Azzolin, L. et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response[J]. Cell 158, 157–170 (2014).


Google Scholar
 

Ye, J. et al. JCAD promotes progression of nonalcoholic steatohepatitis to liver cancer by inhibiting LATS2 kinase activity[J]. Cancer Res. 77, 5287–5300 (2017).


Google Scholar
 

Deng, Y. et al. Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival[J]. Protein Cell 7, 362–372 (2016).


Google Scholar
 

Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway[J]. Nat. Chem. Biol. 12, 282–289 (2016).


Google Scholar
 

Chiang, J. Y. Bile acid metabolism and signaling[J]. Compr. Physiol. 3, 1191–1212 (2013).


Google Scholar
 

De Boer, J. F. et al. New insights in the multiple roles of bile acids and their signaling pathways in metabolic control[J]. Curr. Opin. Lipidol. 29, 194–202 (2018).


Google Scholar
 

Hegyi, P. et al. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease[J]. Physiol Rev. 98, 1983–2023 (2018).


Google Scholar
 

Kanehisa M. The KEGG Database[J]. https://www.genome.jp/kegg/ (2022).

Li, J. et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARalpha pathways[J]. J Hepatol. 63, 1378–1389 (2015).


Google Scholar
 

Zhao, B. et al. YAP activation in melanoma contributes to anoikis resistance and metastasis[J]. Exp. Biol. Med. 246, 888–896 (2021).


Google Scholar
Â