Roberts, A. G., Younge, N. & Greenberg, R. G. Neonatal Necrotizing Enterocolitis: An Update on Pathophysiology, Treatment, and Prevention. Paediatr. Drugs 26, 259–275 (2024).


Google Scholar
 

Alsaied, A., Islam, N. & Thalib, L. Global incidence of Necrotizing Enterocolitis: a systematic review and Meta-analysis. BMC Pediatr. 20, 344 (2020).


Google Scholar
 

Meister, A. L., Doheny, K. K. & Travagli, R. A. Necrotizing enterocolitis: It’s not all in the gut. Exp. Biol. Med (Maywood) 245, 85–95 (2020).


Google Scholar
 

Stey, A. et al. Outcomes and costs of surgical treatments of necrotizing enterocolitis. Pediatrics 135, e1190–e1197 (2015).


Google Scholar
 

Mara, M. A., Good, M. & Weitkamp, J. H. Innate and adaptive immunity in necrotizing enterocolitis. Semin Fetal Neonatal Med 23, 394–399 (2018).


Google Scholar
 

Duess, J. W. et al. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 15, 2221470 (2023).


Google Scholar
 

Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol 19, 77–94 (2021).


Google Scholar
 

Chen, Z. et al. Bacteroides fragilis alleviates necrotizing enterocolitis through restoring bile acid metabolism balance using bile salt hydrolase and inhibiting FXR-NLRP3 signaling pathway. Gut Microbes 16, 2379566 (2024).


Google Scholar
 

Pan, L. L. et al. Infant feces-derived Lactobacillus gasseri FWJL-4 mitigates experimental necrotizing enterocolitis via acetate production. Gut Microbes 16, 2430541 (2024).


Google Scholar
 

Omenetti, S. & Pizarro, T. T. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 6, 639 (2015).


Google Scholar
 

Chang, Y. et al. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed. Pharmacother. 141, 111931 (2021).


Google Scholar
 

Ma, F. et al. Melatonin ameliorates necrotizing enterocolitis by preventing Th17/Treg imbalance through activation of the AMPK/SIRT1 pathway. Theranostics 10, 7730–7746 (2020).


Google Scholar
 

Yarci, E. et al. Inhibition of Interleukin-6 signaling: A novel therapeutic approach to necrotizing enterocolitis. Int Immunopharmacol. 101, 108358 (2021).


Google Scholar
 

Ma, Z. et al. Fecal microbiota transplantation improves chicken growth performance by balancing jejunal Th17/Treg cells. Microbiome 11, 137 (2023).


Google Scholar
 

Dang, D. et al. Integrative analysis links ferroptosis to necrotizing enterocolitis and reveals the role of ACSL4 in immune disorders. iScience 25, 105406 (2022).


Google Scholar
 

Ho, T., Sarkar, A., Szalacha, L. & Groer, M. W. Intestinal Microbiome in Preterm Infants Influenced by Enteral Iron Dosing. J. Pediatr. Gastroenterol. Nutr. 72, e132–e138 (2021).


Google Scholar
 

Zhang, X., Ma, Y., Lv, G. & Wang, H. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases. Front Pharm. 14, 1095366 (2023).


Google Scholar
 

Gao, C. et al. N-Acetylcysteine Alleviates Necrotizing Enterocolitis by Depressing SESN2 Expression to Inhibit Ferroptosis in Intestinal Epithelial Cells. Inflammation 48, 464–482 (2025).


Google Scholar
 

Dang, D. et al. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. Faseb J. 36, e22649 (2022).


Google Scholar
 

Zhang, Z. et al. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic. Biol. Med 181, 130–142 (2022).


Google Scholar
 

Zhang, H. et al. Quercetin alleviates LPS/iE-DAP-induced liver injury by suppressing ferroptosis via regulating ferritinophagy and intracellular iron efflux. Redox Biol. 81, 103557 (2025).


Google Scholar
 

Chen, H. et al. Butyrate ameliorated ferroptosis in ulcerative colitis through modulating Nrf2/GPX4 signal pathway and improving intestinal barrier. Biochim Biophys. Acta Mol. Basis Dis. 1870, 166984 (2024).


Google Scholar
 

Zheng, Z. J. et al. Sleep Deprivation Induces Gut Damage via Ferroptosis. J. Pineal Res 76, e12987 (2024).


Google Scholar
 

Wei, X. & Feng, X. DS0384 Alleviates Necrotizing Enterocolitis: Secretes N-carbamyl glutamic Acid and Participates in Lipid Metabolism and Lipid Peroxidation Processes. J. Microbiol Biotechnol. 35, e2410040 (2025).


Google Scholar
 

Xiao, S. et al. Vitamin A and Retinoic Acid Exhibit Protective Effects on Necrotizing Enterocolitis by Regulating Intestinal Flora and Enhancing the Intestinal Epithelial Barrier. Arch. Med Res 49, 1–9 (2018).


Google Scholar
 

Horas, H. N. S. et al. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch. Biochem Biophys. 623-624, 64–75 (2017).


Google Scholar
 

Zhao, J. et al. Adrenic acid induces oxidative stress in hepatocytes. Biochem Biophys. Res Commun. 532, 620–625 (2020).


Google Scholar
 

Chen, X., Li, J., Kang, R., Klionsky, D. J. & Tang, D. Ferroptosis: machinery and regulation. Autophagy 17, 2054–2081 (2021).


Google Scholar
 

Tao, W. et al. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J. Adv. Res 69, 261–278 (2025).


Google Scholar
 

Aziz, M., Prince, J. M. & Wang, P. Gut microbiome and necrotizing enterocolitis: Understanding the connection to find a cure. Cell Host Microbe 30, 612–616 (2022).


Google Scholar
 

Zhang, X., Han, Y., Huang, W., Jin, M. & Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 11, 1789–1812 (2021).


Google Scholar
 

Tian, B. et al. Epigenetic Insights Into Necrotizing Enterocolitis: Unraveling Methylation-Regulated Biomarkers. Inflammation 48, 236–253 (2025).


Google Scholar
 

Liu, J. et al. Fecal microbiota transplantation by enema reduces intestinal injury in experimental necrotizing enterocolitis. J. Pediatr. Surg. 55, 1094–1098 (2020).


Google Scholar
 

Liu, X. C. et al. Gut microbiota and short-chain fatty acids may be new biomarkers for predicting neonatal necrotizing enterocolitis: A pilot study. Front Microbiol 13, 969656 (2022).


Google Scholar
 

Clemente Plaza, N., Reig García-Galbis, M. & Martínez-Espinosa, R. M. Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules 23, https://doi.org/10.3390/molecules23030575 (2018).

He, Y. et al. SP2509 functions as a novel ferroptosis inhibitor by reducing intracellular iron level in vascular smooth muscle cells. Free Radic. Biol. Med 219, 49–63 (2024).


Google Scholar
 

Xi, C. et al. Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease. Antioxidants (Basel) 13, https://doi.org/10.3390/antiox13030337 (2024).

Okamoto, H. et al. Perioperative Administration of Cystine and Theanine Suppresses Inflammation and Facilitates Early Rehabilitation and Recovery after Esophagectomy: A Randomized, Double-Blind, Controlled Clinical Trial. Nutrients 14, https://doi.org/10.3390/nu14112319 (2022).

Hasegawa, T., Mizugaki, A., Inoue, Y., Kato, H. & Murakami, H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids 53, 1021–1032 (2021).


Google Scholar
 

Zaccherini, G. et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF. J. Hepatol. 74, 1117–1131 (2021).


Google Scholar
 

Long, D., Mao, C., Huang, Y., Xu, Y. & Zhu, Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed. Pharmacother. 175, 116722 (2024).


Google Scholar
 

Chen, Y. et al. Human breast milk-derived phospholipid DOPE ameliorates intestinal injury associated with NEC by inhibiting ferroptosis. Food Funct. 15, 10811–10822 (2024).


Google Scholar
 

Egan, C. E. et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J. Clin. Invest 126, 495–508 (2016).


Google Scholar
 

Zhu, C. et al. Roseburia intestinalis inhibits interleukin‑17 excretion and promotes regulatory T cells differentiation in colitis. Mol. Med Rep. 17, 7567-7574 https://doi.org/10.3892/mmr.2018.8833 (2018).


Google Scholar
 

Guo, Y. et al. Biological characteristics of IL-6 and related intestinal diseases. Int J. Biol. Sci. 17, 204–219 (2021).


Google Scholar
 

Ma, F. et al. Interleukin-6-mediated CCR9(+) interleukin-17-producing regulatory T cells polarization increases the severity of necrotizing enterocolitis. EBioMedicine 44, 71–85 (2019).


Google Scholar
 

Tanaka, K. A., Kurihara, S., Shibakusa, T., Chiba, Y. & Mikami, T. Cystine improves survival rates in a LPS-induced sepsis mouse model. Clin. Nutr. 34, 1159–1165 (2015).


Google Scholar
 

Schaefer, J. S. & Klein, J. R. Roquin-a multifunctional regulator of immune homeostasis. Genes Immun. 17, 79–84 (2016).


Google Scholar
 

Wang, J. et al. Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability. Proc. Natl. Acad. Sci. USA 122, e2419625121 (2025).


Google Scholar
 

Wu, Y. K., Liu, C. D., Liu, C., Wu, J. & Xie, Z. G. Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis. Front Immunol. 15, 1387311 (2024).


Google Scholar
 

Hunter, C. E. et al. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J. Pediatr. Surg. 58, 2391–2398 (2023).


Google Scholar
 

Drucker, N. A., Jensen, A. R., Ferkowicz, M. & Markel, T. A. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J. Pediatr. Surg. 53, 1692–1698 (2018).


Google Scholar
 

Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).


Google Scholar
 

Tran, L. et al. Necrotizing enterocolitis and cytomegalovirus infection in a premature infant. Pediatrics 131, e318–e322 (2013).


Google Scholar
 

Prado, C. et al. The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J. Pediatr. Surg. 54, 1578–1583 (2019).


Google Scholar
 

Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).


Google Scholar
 

Bauché, D. et al. IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Sci Immunol 5, https://doi.org/10.1126/sciimmunol.aav1080 (2020).

Seo, G. Y. et al. LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection. Cell Host Microbe 24, 249–260.e244 (2018).


Google Scholar
 

Kurihara, S., Shibahara, S., Arisaka, H. & Akiyama, Y. Enhancement of antigen-specific immunoglobulin G production in mice by co-administration of L-cystine and L-theanine. J. Vet. Med Sci. 69, 1263–1270 (2007).


Google Scholar
 

Lin, L. et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 28, 961–972 (2009).


Google Scholar
 

Bian, Y. et al. Protective Effect of Kaempferol on LPS-Induced Inflammation and Barrier Dysfunction in a Coculture Model of Intestinal Epithelial Cells and Intestinal Microvascular Endothelial Cells. J. Agric Food Chem. 68, 160–167 (2020).


Google Scholar
 

Dai, W. & Chen, Q. M. Fresh Medium or L-Cystine as an Effective Nrf2 Inducer for Cytoprotection in Cell Culture. Cells 12, https://doi.org/10.3390/cells12020291 (2023).

Zhang, Y., Du, W., Chen, Z. & Xiang, C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp. Cell Res 359, 449–457 (2017).


Google Scholar
 

Wei, Y. Y. et al. Interleukin-6 neutralizing antibody attenuates the hypersecretion of airway mucus via inducing the nuclear translocation of Nrf2 in chronic obstructive pulmonary disease. Biomed. Pharmacother. 152, 113244 (2022).


Google Scholar
 

Nishiwaki, N. et al. Overcoming cancer-associated fibroblast-induced immunosuppression by anti-interleukin-6 receptor antibody. Cancer Immunol. Immunother. 72, 2029–2044 (2023).


Google Scholar
 

Betts, B. C. et al. CD4+ T cell STAT3 phosphorylation precedes acute GVHD, and subsequent Th17 tissue invasion correlates with GVHD severity and therapeutic response. J. Leukoc. Biol. 97, 807–819 (2015).


Google Scholar
 

Zhang, X. et al. β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota. J. Transl. Med 21, 14 (2023).


Google Scholar
 

Qiu, L. et al. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol. 140, 112846 (2024).


Google Scholar
Â