Schellart, W. P. Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophys. Res. Lett. 31, (2004).
Huw Davies, J. & von Blanckenburg, F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102 (1995).
Garzanti, E., Radeff, G. & Malusà, M. G. Slab breakoff: A critical appraisal of a geological theory as applied in space and time. Earth Sci. Rev. 177, 303–319 (2018).
Vanderhaeghe, O. The thermal–mechanical evolution of crustal orogenic belts at convergent plate. boundaries: A reappraisal of the orogenic cycle. J. Geodyn. 56–57, 124–145 (2012).
Vanderhaeghe, O. & Duchêne, S. Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22, 315–323 (2010).
Qorbani, E., Bianchi, I. & Bokelmann, G. Slab detachment under the Eastern Alps seen by seismic anisotropy. Earth Planet. Sci. Lett. 409, 96–108 (2015).
Lippitsch, R., Kissling, E. & Ansorge, J. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. Solid Earth. 108, (2003).
Mitterbauer, U. et al. Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model. Tectonophysics 510, 195–206 (2011).
Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B. & Ozacar, A. A. Detecting the limit of slab break-off in central Turkey: New high-resolution Pn tomography results. Geophys. J. Int. 179, 1566–1572 (2009).
Gök, R., Sandvol, E., Türkelli, N., Seber, D. & Barazangi, M. Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophys. Res. Lett. 30 (2003).
Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).
Liang, X. et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet. Sci. Lett. 443, 162–175 (2016).
Chung, S.-L. et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 68, 173–196 (2005).
Zhu, D. C. et al. Magmatic record of India-Asia collision. Sci Rep 5, 14289 (2015).
Huang, Z. et al. Upper mantle structure and dynamics beneath Southeast China. Phys. Earth Planet. Inter. 182, 161–169 (2010).
Neubauer, F., Lips, A., Kouzmanov, K., Lexa, J. & Ivaˇşcanu, P. 1: Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. Ore Geol. Rev. 27, 13–44 (2005).
Freeburn, R., Bouilhol, P., Maunder, B., Magni, V. & van Hunen, J. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet. Sci. Lett. 478, 203–213 (2017).
Gerya, T. V., Yuen, D. A. & Maresch, W. V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101–116 (2004).
Andrews, E. R. & Billen, M. I. Rheologic controls on the dynamics of slab detachment. Tectonophysics 464, 60–69 (2009).
Duretz, T., Schmalholz, S. M. & Gerya, T. V. Dynamics of slab detachment. Geochem. Geophy.,Geosy. 13 (2012).
Duretz, T., Gerya, T. V. & May, D. A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502, 244–256 (2011).
Baumann, C., Gerya, T. V. & Connolly, J. A. D. Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Spec. Publ. 332, 99–114 (2010).
Pysklywec, R. N., Beaumont, C. & Fullsack, P. Modeling the behavior of the continental mantle lithosphere during plate convergence. Geology 28, 655–658 (2000).
Toussaint, G. l., Burov, E. & Jolivet, L. Continental plate collision: Unstable vs. stable slab dynamics. Geology 32, (2004).
Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth Sci. Rev. 207, 103172 (2020).
Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291 (2012).
Vilà, M., Fernández, M. & Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490, 152–164 (2010).
Jaupart, C., Mareschal, J.-C. & Iarotsky, L. Radiogenic heat production in the continental crust. Lithos 262, 398–427 (2016).
Vanderhaeghe, O., Guergouz, C., Fabre, C., Duchêne, S. & Baratoux, D. Secular cooling and crystallization of partially molten Archaean continental crust over 1 Ga. C.R. Geosci. 351, 562–573 (2019).
Ptáček, M. P., Dauphas, N. & Greber, N. D. Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth Planet. Sci. Lett. 539 (2020).
Condie, K. C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).
Sandiford, M., Mclaren, S. & Neumann, N. Long-term thermal consequences of the redistribution of heat-producing elements associated with large-scale granitic complexes. J. Metamorph. Geol. 20, 87–98 (2002).
Forsyth, D. & Uyeda, S. On the Relative Importance of the Driving Forces of Plate Motion*. Geophys. J. Int. 43, 163–200 (1975).
Ito, K. & Kennedy, G. C. In: The Structure and Physical Properties of the Earth’s Crust 303–314 (1971).
Doin, M.-P. & Henry, P. Subduction initiation and continental crust recycling: The roles of rheology and eclogitization. Tectonophysics 342, 163–191 (2001).
Austrheim, H. & Griffin, W. L. Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, western Norway. Chem. Geol. 50, 267–281 (1985).
Gerya, T. V. & Yuen, D. A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).
Li, Z. H., Xu, Z. Q. & Gerya, T. V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65–77 (2011).
Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).
Lallemand, S., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophy. Geosy. 6, (2005).
Li, Z.-H. & Ribe, N. M. Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res. Solid Earth. 117, (2012).
Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2008).
Hacker, B. R. & Bebout, G. E. Eclogite formation and the rheology, buoyancy, seismicity, and H~ 2O content of oceanic crust. Geophys. Monograph-American Geophys. Union 96, 337–346 (1996).
Hernández-Uribe, D., Palin, R. M., Cone, K. A. & Cao, W. Petrological Implications of Seafloor Hydrothermal Alteration of Subducted Mid-Ocean Ridge Basalt. J. Petrol. 61 (2020).
Sizova, E., Gerya, T. & Brown, M. Contrasting styles of Phanerozoic and Precambrian continental. collision. Gondwana Res. 25, 522–545 (2014).
Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46 (2008).
Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
Weller, O. M., Copley, A., Miller, W. G. R., Palin, R. M. & Dyck, B. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth Planet. Sci. Lett. 518, 86–99 (2019).
Zhao, G., Wilde, S. A., Cawood, P. A. & Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 107, 45–73 (2001).
Kusky Timothy, M., Li, J.-H. & Tucker Robert, D. The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142–1145 (2001).
Wang, L.-J. et al. High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos 320–321, 435–453 (2018).
Halpin, J. A. & Reid, A. J. Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia: The southern cousin in the Rae family?. Precambrian Res. 276, 123–144 (2016).
Celaˆl Şengör, A. M. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth Sci. Rev. 27, 1–201 (1990).
Fan, J.-J., Li, C., Xie, C.-M. & Liu, Y.-M. Depositional environment and provenance of the upper Permian-Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. Int. Geol. Rev. 58, 228–245 (2016).
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. & Maruyama, S. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int. Geol. Rev. 46, 1–27 (2010).
Replumaz, A., Negredo, A. M., Guillot, S. & Villaseñor, A. Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics 483, 125–134 (2010).
Kufner, S.-K. et al. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet. Sci. Lett. 435, 171–184 (2016).