Schellart, W. P. Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophys. Res. Lett. 31, (2004).

Huw Davies, J. & von Blanckenburg, F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102 (1995).

Article 
ADS 

Google Scholar
 

Garzanti, E., Radeff, G. & Malusà, M. G. Slab breakoff: A critical appraisal of a geological theory as applied in space and time. Earth Sci. Rev. 177, 303–319 (2018).

Article 
ADS 

Google Scholar
 

Vanderhaeghe, O. The thermal–mechanical evolution of crustal orogenic belts at convergent plate. boundaries: A reappraisal of the orogenic cycle. J. Geodyn. 56–57, 124–145 (2012).

Article 

Google Scholar
 

Vanderhaeghe, O. & Duchêne, S. Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22, 315–323 (2010).

Article 
ADS 

Google Scholar
 

Qorbani, E., Bianchi, I. & Bokelmann, G. Slab detachment under the Eastern Alps seen by seismic anisotropy. Earth Planet. Sci. Lett. 409, 96–108 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lippitsch, R., Kissling, E. & Ansorge, J. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. Solid Earth. 108, (2003).

Mitterbauer, U. et al. Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model. Tectonophysics 510, 195–206 (2011).

Article 
ADS 

Google Scholar
 

Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B. & Ozacar, A. A. Detecting the limit of slab break-off in central Turkey: New high-resolution Pn tomography results. Geophys. J. Int. 179, 1566–1572 (2009).

Article 
ADS 

Google Scholar
 

Gök, R., Sandvol, E., Türkelli, N., Seber, D. & Barazangi, M. Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophys. Res. Lett. 30 (2003).

Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Liang, X. et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet. Sci. Lett. 443, 162–175 (2016).

Article 
ADS 

Google Scholar
 

Chung, S.-L. et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 68, 173–196 (2005).

Article 
ADS 

Google Scholar
 

Zhu, D. C. et al. Magmatic record of India-Asia collision. Sci Rep 5, 14289 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, Z. et al. Upper mantle structure and dynamics beneath Southeast China. Phys. Earth Planet. Inter. 182, 161–169 (2010).

Article 
ADS 

Google Scholar
 

Neubauer, F., Lips, A., Kouzmanov, K., Lexa, J. & Ivaˇşcanu, P. 1: Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. Ore Geol. Rev. 27, 13–44 (2005).

Article 

Google Scholar
 

Freeburn, R., Bouilhol, P., Maunder, B., Magni, V. & van Hunen, J. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet. Sci. Lett. 478, 203–213 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Gerya, T. V., Yuen, D. A. & Maresch, W. V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101–116 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Andrews, E. R. & Billen, M. I. Rheologic controls on the dynamics of slab detachment. Tectonophysics 464, 60–69 (2009).

Article 
ADS 

Google Scholar
 

Duretz, T., Schmalholz, S. M. & Gerya, T. V. Dynamics of slab detachment. Geochem. Geophy.,Geosy. 13 (2012).

Duretz, T., Gerya, T. V. & May, D. A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502, 244–256 (2011).

Article 
ADS 

Google Scholar
 

Baumann, C., Gerya, T. V. & Connolly, J. A. D. Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Spec. Publ. 332, 99–114 (2010).

Article 
ADS 

Google Scholar
 

Pysklywec, R. N., Beaumont, C. & Fullsack, P. Modeling the behavior of the continental mantle lithosphere during plate convergence. Geology 28, 655–658 (2000).

Article 
ADS 

Google Scholar
 

Toussaint, G. l., Burov, E. & Jolivet, L. Continental plate collision: Unstable vs. stable slab dynamics. Geology 32, (2004).

Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth Sci. Rev. 207, 103172 (2020).

Article 
CAS 

Google Scholar
 

Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291 (2012).

Article 
ADS 
CAS 

Google Scholar
 

Vilà, M., Fernández, M. & Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490, 152–164 (2010).

Article 
ADS 

Google Scholar
 

Jaupart, C., Mareschal, J.-C. & Iarotsky, L. Radiogenic heat production in the continental crust. Lithos 262, 398–427 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Vanderhaeghe, O., Guergouz, C., Fabre, C., Duchêne, S. & Baratoux, D. Secular cooling and crystallization of partially molten Archaean continental crust over 1 Ga. C.R. Geosci. 351, 562–573 (2019).

Article 
ADS 

Google Scholar
 

Ptáček, M. P., Dauphas, N. & Greber, N. D. Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth Planet. Sci. Lett. 539 (2020).

Condie, K. C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

Article 
ADS 
CAS 

Google Scholar
 

Sandiford, M., Mclaren, S. & Neumann, N. Long-term thermal consequences of the redistribution of heat-producing elements associated with large-scale granitic complexes. J. Metamorph. Geol. 20, 87–98 (2002).

Article 
ADS 

Google Scholar
 

Forsyth, D. & Uyeda, S. On the Relative Importance of the Driving Forces of Plate Motion*. Geophys. J. Int. 43, 163–200 (1975).

Article 
ADS 

Google Scholar
 

Ito, K. & Kennedy, G. C. In: The Structure and Physical Properties of the Earth’s Crust 303–314 (1971).

Doin, M.-P. & Henry, P. Subduction initiation and continental crust recycling: The roles of rheology and eclogitization. Tectonophysics 342, 163–191 (2001).

Article 
ADS 

Google Scholar
 

Austrheim, H. & Griffin, W. L. Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, western Norway. Chem. Geol. 50, 267–281 (1985).

Article 
ADS 
CAS 

Google Scholar
 

Gerya, T. V. & Yuen, D. A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

Article 
ADS 
CAS 

Google Scholar
 

Li, Z. H., Xu, Z. Q. & Gerya, T. V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65–77 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lallemand, S., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophy. Geosy. 6, (2005).

Li, Z.-H. & Ribe, N. M. Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res. Solid Earth. 117, (2012).

Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2008).

Article 
ADS 

Google Scholar
 

Hacker, B. R. & Bebout, G. E. Eclogite formation and the rheology, buoyancy, seismicity, and H~ 2O content of oceanic crust. Geophys. Monograph-American Geophys. Union 96, 337–346 (1996).

ADS 

Google Scholar
 

Hernández-Uribe, D., Palin, R. M., Cone, K. A. & Cao, W. Petrological Implications of Seafloor Hydrothermal Alteration of Subducted Mid-Ocean Ridge Basalt. J. Petrol. 61 (2020).

Sizova, E., Gerya, T. & Brown, M. Contrasting styles of Phanerozoic and Precambrian continental. collision. Gondwana Res. 25, 522–545 (2014).

Article 
ADS 

Google Scholar
 

Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46 (2008).

Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

Article 
ADS 
CAS 

Google Scholar
 

Weller, O. M., Copley, A., Miller, W. G. R., Palin, R. M. & Dyck, B. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth Planet. Sci. Lett. 518, 86–99 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Zhao, G., Wilde, S. A., Cawood, P. A. & Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 107, 45–73 (2001).

Article 
ADS 
CAS 

Google Scholar
 

Kusky Timothy, M., Li, J.-H. & Tucker Robert, D. The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142–1145 (2001).

Article 
ADS 

Google Scholar
 

Wang, L.-J. et al. High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos 320–321, 435–453 (2018).

Article 
ADS 

Google Scholar
 

Halpin, J. A. & Reid, A. J. Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia: The southern cousin in the Rae family?. Precambrian Res. 276, 123–144 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Celaˆl Şengör, A. M. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth Sci. Rev. 27, 1–201 (1990).

Article 
ADS 

Google Scholar
 

Fan, J.-J., Li, C., Xie, C.-M. & Liu, Y.-M. Depositional environment and provenance of the upper Permian-Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. Int. Geol. Rev. 58, 228–245 (2016).

Article 

Google Scholar
 

Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. & Maruyama, S. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int. Geol. Rev. 46, 1–27 (2010).

Article 

Google Scholar
 

Replumaz, A., Negredo, A. M., Guillot, S. & Villaseñor, A. Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics 483, 125–134 (2010).

Article 
ADS 

Google Scholar
 

Kufner, S.-K. et al. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet. Sci. Lett. 435, 171–184 (2016).

Article 
ADS 
CAS 

Google Scholar