Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

Article 
CAS 

Google Scholar
 

Kerr, M. R. et al. Widespread ecological novelty across the terrestrial biosphere. Nat. Ecol. Evol. 9, 589–598 (2025).

Article 

Google Scholar
 

Pertierra, L. R. et al. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 387, 609–615 (2025).

Article 
CAS 

Google Scholar
 

Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

Article 
CAS 

Google Scholar
 

Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).

Article 
CAS 

Google Scholar
 

Mikucki, J. A. et al. Field-based planetary protection operations for melt probes: validation of clean access into the Blood Falls, Antarctica, englacial ecosystem. Astrobiology 23, 1165–1178 (2023).

Article 
CAS 

Google Scholar
 

Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012).

Article 

Google Scholar
 

Dehling, D. M. & Chown, S. L. Global increase in the endemism of birds from north to south. Nat. Commun. 16, 6251 (2025).

Article 
CAS 

Google Scholar
 

Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

Article 

Google Scholar
 

Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).

Article 

Google Scholar
 

Neme, J., England, M. H. & Hogg, A. M. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820.

Robinson, S. A., Revell, L. E., Mackenzie, R. & Ossola, R. Extended ozone depletion and reduced snow and ice cover — consequences for Antarctic biota. Glob. Change Biol. 30, e17283 (2024).

Article 
CAS 

Google Scholar
 

Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).

Article 
CAS 

Google Scholar
 

Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).

Article 
CAS 

Google Scholar
 

Câmara, P. E. A. S. et al. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 25, 501–512 (2021).

Article 

Google Scholar
 

Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

Article 
CAS 

Google Scholar
 

Colesie, C. et al. Is Antarctica greening? Glob. Change Biol. 31, e70294 (2025).

Article 
CAS 

Google Scholar
 

Folgar-Cameán, Y. & Barták, M. Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: species-specific responses. Czech Polar Rep. 9, 114–124 (2019).

Article 

Google Scholar
 

Prather, H. M. et al. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).

Article 

Google Scholar
 

Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

Article 

Google Scholar
 

Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).

Article 

Google Scholar
 

Grainger, T. N. et al. An empiricist’s guide to using ecological theory. Am. Nat. 199, 1–20 (2022).

Article 

Google Scholar
 

Chown, S. L. et al. Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action (SCAR, 2022).

Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

Article 

Google Scholar
 

Terauds, A. et al. The biodiversity of ice-free Antarctica database. Ecology 106, e70000 (2025).

Article 

Google Scholar
 

Tóth, A. B. et al. A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps. Sci. Data 12, 133 (2025).

Article 

Google Scholar
 

Singh, C. P. et al. Mapping lichen abundance in ice-free areas of Larsemann Hills, East Antarctica using remote sensing and lichen spectra. Polar Sci. 38, 100976 (2023).

Article 

Google Scholar
 

Patterson, C. R., Helmstedt, K. J., Terauds, A. & Shaw, J. D. A multidimensional assessment of Antarctic terrestrial biological data. Divers. Distrib. 31, e13909 (2025).

Article 

Google Scholar
 

Anderson, R. O., Chown, S. L. & Leihy, R. I. Continent-wide analysis of moss diversity in Antarctica. Ecography 2025, e07353 (2025).

Article 

Google Scholar
 

Walshaw, C. V. et al. A satellite-derived baseline of photosynthetic life across Antarctica. Nat. Geosci. 17, 755–762 (2024).

Article 
CAS 

Google Scholar
 

Thomson, A. I. et al. Surface darkening by abundant and diverse algae on an Antarctic ice cap. Nat. Commun. 16, 2647 (2025).

Article 
CAS 

Google Scholar
 

Varliero, G. et al. Biogeographic survey of soil bacterial communities across Antarctica. Microbiome 12, 9 (2024).

Article 

Google Scholar
 

Lambrechts, S., Willems, A. & Tahon, G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front. Microbiol. 10, 242 (2019).

Article 

Google Scholar
 

Albanese, D. et al. Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages. Microbiome 9, 63 (2021).

Article 
CAS 

Google Scholar
 

Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 345 (2024).

Article 

Google Scholar
 

Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 5634–5639 (2014).

Article 
CAS 

Google Scholar
 

Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

Article 
CAS 

Google Scholar
 

Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).

Article 
CAS 

Google Scholar
 

Bottos, E. M. et al. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 96, fiaa042 (2020).

Article 
CAS 

Google Scholar
 

Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. 11, 1229283 (2023).

Article 

Google Scholar
 

Bracegirdle, T. J. et al. Antarctic extreme seasons under 20th and 21st century climate change. npj Clim. Atmos. Sci. 7, 276 (2024).

Article 

Google Scholar
 

Xu, M., Pithan, F. & Yang, Q. Antarctic warm extremes across seasons and their response to advection. J. Geophys. Res. D Atmos. 129, e2024JD040884.

Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & Van Dalum, C. T. How does the Southern Annular Mode control surface melt in East Antarctica? Geophys. Res. Lett. 51, e2023GL105475 (2024).

Article 

Google Scholar
 

Brooks, S. T., Jabour, J., Van Den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).

Article 

Google Scholar
 

Coetzee, B. W. T. & Chown, S. L. A meta-analysis of human disturbance impacts on Antarctic wildlife. Biol. Rev. 91, 578–596 (2016).

Article 

Google Scholar
 

Flynn, C. M., Hart, T., Clucas, G. V. & Lynch, H. J. Penguins in the anthropause: COVID-19 closures drive gentoo penguin movement among breeding colonies. Biol. Conserv. 286, 110318 (2023).

Article 

Google Scholar
 

Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).

Article 
CAS 

Google Scholar
 

Leihy, R. I. et al. Antarctica’s wilderness fails to capture continent’s biodiversity. Nature 583, 567–571 (2020).

Article 
CAS 

Google Scholar
 

Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).

Article 
CAS 

Google Scholar
 

Bargagli, R. & Rota, E. Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ. Sci. Adv. 3, 543–560 (2024).

Article 

Google Scholar
 

Suaria, G. et al. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition. Environ. Int. 136, 105494 (2020).

Article 

Google Scholar
 

Aves, A. R. et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).

Article 

Google Scholar
 

Santamans, A. C. et al. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS ONE 12, e0181901 (2017).

Article 

Google Scholar
 

Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost. Sci. Total Environ. 651, 1534–1548 (2019).

Article 
CAS 

Google Scholar
 

McCarthy, A. H., Peck, L. S. & Aldridge, D. C. Ship traffic connects Antarctica’s fragile coasts to worldwide ecosystems. Proc. Natl Acad. Sci. USA 119, e2110303118 (2022).

Article 
CAS 

Google Scholar
 

Pertierra, L. R., Escribano-Álvarez, P. & Olalla-Tárraga, M. Á Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 44, 1203–1208 (2021).

Article 

Google Scholar
 

Chown, S. L. et al. Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biol. Biochem. 166, 108579 (2022).

Article 
CAS 

Google Scholar
 

Leihy, R. I., Peake, L., Clarke, D. A., Chown, S. L. & McGeoch, M. A. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands. Sci. Data 10, 200 (2023).

Article 

Google Scholar
 

Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).

Article 

Google Scholar
 

Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

Article 

Google Scholar
 

Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23, 2863–2873 (2017).

Article 

Google Scholar
 

Onley, I. R. et al. Assessing ongoing risks and managing detections of non-native invertebrates in the Antarctic region. NeoBiota 95, 133–147 (2024).

Article 

Google Scholar
 

Hughes, K. A., Pertierra, L. R., Molina-Montenegro, M. A. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015).

Article 

Google Scholar
 

Kerry, K. R. & Riddle, M. J. Health of Antarctic Wildlife: A Challenge for Science and Policy (Springer, 2009).

Kuiken, T. et al. Emergence, spread, and impact of high-pathogenicity avian influenza H5 in wild birds and mammals of South America and Antarctica. Conserv. Biol. 39, e70052 (2025).

Article 

Google Scholar
 

Leihy, R. I. et al. Antarctic biosecurity policy effectively manages the rates of alien introductions. Earth’s Future 13, e2024EF005405 (2025).

Article 

Google Scholar
 

Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

Article 

Google Scholar
 

Contador, T. et al. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Sci. Rep. 10, 9087 (2020).

Article 
CAS 

Google Scholar
 

Potts, L. J. et al. Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia 194, 529–539 (2020).

Article 

Google Scholar
 

Devlin, J. J. et al. Simulated winter warming negatively impacts survival of Antarctica’s only endemic insect. Funct. Ecol. 36, 1949–1960 (2022).

Article 
CAS 

Google Scholar
 

Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob. Change Biol. 12, 1800–1812 (2006).

Article 

Google Scholar
 

Zhang, E. et al. Effects of increasing soil moisture on Antarctic desert microbial ecosystems. Conserv. Biol. 38, e14268 (2024).

Article 

Google Scholar
 

Dragone, N. B. et al. Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils. mSystems 7, e01330-21 (2022).

Article 

Google Scholar
 

Dragone, N. B. et al. Exploring the boundaries of microbial habitability in soil. J. Geophys. Res. G Biogeosci, 126, e2020JG006052 (2021).

Article 

Google Scholar
 

Colesie, C. et al. The longest baseline record of vegetation dynamics in Antarctica reveals acute sensitivity to water availability. Earth’s Future 10, e2022EF002823.

Amesbury, M. J. et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr. Biol. 27, 1616–1622.e2 (2017).

Article 
CAS 

Google Scholar
 

Purcell, A. M. et al. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. ISME J. 17, 2290–2302 (2023).

Article 
CAS 

Google Scholar
 

De Jonge, I. K., Convey, P., Klarenberg, I. J., Cornelissen, J. H. C. & Bokhorst, S. Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients. N. Phytol. 246, 406–415 (2025).

Article 

Google Scholar
 

Gray, A. et al. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11, 2527 (2020).

Article 
CAS 

Google Scholar
 

Ray, A. E. et al. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J. 16, 2547–2560 (2022).

Article 
CAS 

Google Scholar
 

Snyder, M. D. et al. Soil biota sensitivity to hydroclimate variability in a polar desert ecosystem. Arct. Antarct. Alp. Res. https://doi.org/10.1080/15230430.2025.2485283 (2025).

Article 

Google Scholar
 

Newsham, K. K. et al. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front. Microbiol. 13, 1050372 (2022).

Article 

Google Scholar
 

Hopkins, D. W. et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38, 3130–3140 (2006).

Article 
CAS 

Google Scholar
 

Newsham, K. K. et al. Bacterial community composition and diversity respond to nutrient amendment but not warming in a maritime Antarctic soil. Microb. Ecol. 78, 974–984 (2019).

Article 

Google Scholar
 

Chown, S. L. & Convey, P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil. Trans. R. Soc. B Biol. Sci. 362, 2307–2331 (2007).

Article 

Google Scholar
 

Matos, P. et al. Microscale is key to model current and future maritime Antarctic vegetation. Sci. Total Environ. 946, 174171 (2024).

Article 
CAS 

Google Scholar
 

Renault, D. et al. The rising threat of climate change for arthropods from Earth’s cold regions: taxonomic rather than native status drives species sensitivity. Glob. Change Biol. 28, 5914–5927 (2022).

Article 
CAS 

Google Scholar
 

Cuba-Diaz, M., Fuentes-Lillo, E., Navarrete-Campos, D. & Chwedorzewska, K. J. Effects of climate change conditions on the individual response and biotic interactions of the native and non-native plants of Antarctica. Polar Biol. 46, 849–863 (2023).

Article 

Google Scholar
 

Knox, M. A. et al. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic dry valleys. Ecol. Lett. 20, 1242–1249 (2017).

Article 

Google Scholar
 

Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry valleys: early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).

Article 
CAS 

Google Scholar
 

Yergeau, E. & Kowalchuk, G. A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ. Microbiol. 10, 2223–2235 (2008).

Article 

Google Scholar
 

Laudicina, V. A. et al. Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic. Polar Biol. 38, 1153–1160 (2015).

Article 

Google Scholar
 

de Souza Carvalho, J. V. et al. Impact of expected global warming on C mineralization in maritime Antarctic soils: results of laboratory experiments. Antarct. Sci. 22, 485–493 (2010).

Article 

Google Scholar
 

Aislabie, J. M., Balks, M. R., Foght, J. M. & Waterhouse, E. J. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38, 1265–1274 (2004).

Article 
CAS 

Google Scholar
 

Baird, H. P., Janion-Scheepers, C., Stevens, M. I., Leihy, R. I. & Chown, S. L. The ecological biogeography of indigenous and introduced Antarctic springtails. J. Biogeogr. 46, 1959–1973 (2019).

Article 

Google Scholar
 

Tytgat, B. et al. Polar lake microbiomes have distinct evolutionary histories. Sci. Adv. 9, eade7130 (2023).

Article 
CAS 

Google Scholar
 

Saługa, M., Ochyra, R. & Ronikier, M. Phylogeographical breaks and limited connectivity among multiple refugia in a pan-Antarctic moss species. J. Biogeogr. 49, 1991–2004 (2022).

Article 

Google Scholar
 

Ross, G. M., Rymer, P. D., Cook, J. M. & Nielsen, U. N. Phylogeography of Antarctic soil invertebrate fauna reveals ancient origins, repeated colonization and recent evolution. Antarct. Sci. 37, 13–30 (2025).

Article 

Google Scholar
 

Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C. & Barrett, J. E. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4, 136 (2013).

Article 

Google Scholar
 

Diaz, M. A. et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. F Earth Surf. 123, 3323–3337 (2018).

Article 

Google Scholar
 

Lagostina, E. et al. Effects of dispersal strategy and migration history on genetic diversity and population structure of Antarctic lichens. J. Biogeogr. 48, 1635–1653 (2021).

Article 

Google Scholar
 

Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. & Gray, A. Antarctica’s vegetation in a changing climate. WIREs Clim. Change 14, e810 (2022).

Article 

Google Scholar
 

Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).

Article 

Google Scholar
 

Bottos, E. M., Scarrow, J. W., Archer, S. D. J., McDonald, I. R. & Cary, S. C. Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils (Springer, 2014).

Vega, G. C., Convey, P., Hughes, K. A. & Olalla-Tárraga, M. Á Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conserv. Divers. 13, 63–76 (2020).

Article 

Google Scholar
 

Morelli, T. L. et al. Does habitat or climate change drive species range shifts? Ecography 2025, e07560 (2025).

Article 

Google Scholar
 

Wong, S. Y., Machado-de-Lima, N. M., Wilkins, D., Zhang, E. & Ferrari, B. C. Fine-scale landscape heterogeneity drives microbial community structure at Robinson ridge, East Antarctica. Sci. Total Environ. 958, 177964 (2025).

Article 
CAS 

Google Scholar
 

Hrbáček, F. et al. Active layer and permafrost thermal regimes in the ice-free areas of Antarctica. Earth-Sci. Rev. 242, 104458 (2023).

Article 

Google Scholar
 

Kopp, M. et al. South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar. Ecol. Prog. Ser. 435, 263–267 (2011).

Article 

Google Scholar
 

Printzen, C., Domaschke, S., Fernández-Mendoza, F. & Pérez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).

Article 

Google Scholar
 

Jorquera, J. et al. Genomic introgression and adaptation of southern seabird species facilitate recent polar colonization. Mol. Biol. Evol. 42, msaf053 (2025).

Article 
CAS 

Google Scholar
 

Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).

Article 
CAS 

Google Scholar
 

Ramírez, C. F. et al. Ecophysiology of Antarctic vascular plants: an update on the extreme environment resistance mechanisms and their importance in facing climate change. Plants 13, 449 (2024).

Article 

Google Scholar
 

Teets, N. M. & Denlinger, D. L. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 217, 84–93 (2014).

Article 
CAS 

Google Scholar
 

Bahrndorff, S., Lauritzen, J. M. S., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).

Article 

Google Scholar
 

Bahrndorff, S., Convey, P., Chown, S. L. & Sørensen, J. G. Polar ectotherms more vulnerable to warming than expected. Trends Ecol. Evol. 40, 619–621 (2025).

Article 

Google Scholar
 

Escribano-Álvarez, P., Martinez, P. A., Janion-Scheepers, C., Pertierra, L. R. & Olalla-Tárraga, M. Á Colonizing polar environments: thermal niche evolution in Collembola. Ecography 2024, e06884 (2024).

Article 

Google Scholar
 

Spacht, D. E. et al. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia 197, 373–385 (2021).

Article 

Google Scholar
 

Beltrán-Sanz, N., Raggio, J., Pintado, A., Dal Grande, F. & García Sancho, L. Physiological plasticity as a strategy to cope with harsh climatic conditions: ecophysiological meta-analysis of the cosmopolitan moss Ceratodon purpureus in the Southern Hemisphere. Plants 12, 499 (2023).

Article 

Google Scholar
 

Colesie, C., Büdel, B., Hurry, V. & Green, T. G. A. Can Antarctic lichens acclimatize to changes in temperature? Glob. Change Biol. 24, 1123–1135 (2018).

Article 

Google Scholar
 

Wouw, M. V. D., Dijk, P. V. & Huiskes, A. H. L. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). J. Biogeogr. 35, 365–376 (2008).

Article 

Google Scholar
 

Casanova-Katny, M. A. & Cavieres, L. A. Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol. 35, 1869–1878 (2012).

Article 

Google Scholar
 

Buelow, H. N. et al. Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica. Front. Microbiol. 7, 1040 (2016).

Article 

Google Scholar
 

Nicolas, A. M. et al. A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil. Nat. Commun. 14, 5835 (2023).

Article 
CAS 

Google Scholar
 

Collins, G. E. & Hogg, I. D. Temperature-related activity of Gomphiocephalus hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley, Antarctica. Polar Biol. 39, 379–389 (2016).

Article 

Google Scholar
 

Amaral, C. et al. Abrupt greening observed since 2020 at Admiralty Bay, King George Island, Antarctica. Polar Biol. 48, 40 (2025).

Article 

Google Scholar
 

Bokhorst, S., Convey, P., Casanova-Katny, A. & Aerts, R. Warming impacts potential germination of non-native plants on the Antarctic Peninsula. Commun. Biol. 4, 403 (2021).

Article 
CAS 

Google Scholar
 

McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Phil. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).

Article 

Google Scholar
 

Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006).

Article 
CAS 

Google Scholar
 

Cavieres, L. A. et al. The importance of facilitative interactions on the performance of Colobanthus quitensis in an Antarctic tundra. J. Veg. Sci. 29, 236–244 (2018).

Article 

Google Scholar
 

Rocha, B. et al. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Curr. Biol. 34, 4884–4893.e4 (2024).

Article 
CAS 

Google Scholar
 

Znój, A., Gawor, J., Gromadka, R., Chwedorzewska, K. J. & Grzesiak, J. Root-associated bacteria community characteristics of Antarctic plants: Deschampsia antarctica and Colobanthus quitensis — a comparison. Microb. Ecol. 84, 808–820 (2022).

Article 

Google Scholar
 

Naz, B. et al. Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front. Microbiol. 14, 1130321 (2023).

Article 

Google Scholar
 

Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).

Article 

Google Scholar
 

Acuña-Rodríguez, I. S. et al. Fungal endophyte symbionts enhance plant adaptation in Antarctic habitats. Physiol. Plant. 176, e14589 (2024).

Article 

Google Scholar
 

Bokhorst, S., Huiskes, A., Convey, P., Van Bodegom, P. M. & Aerts, R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).

Article 
CAS 

Google Scholar
 

Ball, B. A., Convey, P., Feeser, K. L., Nielsen, U. N. & Van Horn, D. J. Environmental harshness mediates the relationship between aboveground and belowground communities in Antarctica. Soil Biol. Biochem. 164, 108493 (2022).

Article 
CAS 

Google Scholar
 

Krna, M. A., Day, T. A. & Ruhland, C. T. Effects of neighboring plants on the growth and reproduction of Deschampsia antarctica in Antarctic tundra. Polar Biol. 32, 1487–1494 (2009).

Article 

Google Scholar
 

Shaw, E. A. & Wall, D. H. Biotic interactions in experimental Antarctic soil microcosms vary with abiotic stress. Soil Syst. 3, 57 (2019).

Article 
CAS 

Google Scholar
 

Kenarova, A. et al. Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol. 36, 223–233 (2013).

Article 

Google Scholar
 

Almela, P., Velázquez, D., Rico, E., Justel, A. & Quesada, A. Marine vertebrates impact the bacterial community composition and food webs of Antarctic microbial mats. Front. Microbiol. 13, 841175 (2022).

Article 

Google Scholar
 

Molina-Montenegro, M. A., Bergstrom, D. M., Chwedorzewska, K. J., Convey, P. & Chown, S. L. Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota 51, 19–40 (2019).

Article 

Google Scholar
 

Cavieres, L. A., Sanhueza, A. K., Torres-Mellado, G. & Casanova-Katny, A. Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol. Invasions 20, 1597–1610 (2017).

Article 

Google Scholar
 

Bartlett, J. C., Convey, P., Newsham, K. K. & Hayward, S. A. L. Ecological consequences of a single introduced species to the Antarctic: terrestrial impacts of the invasive midge Eretmoptera murphyi on Signy Island. Soil Biol. Biochem. 180, 108965 (2023).

Article 
CAS 

Google Scholar
 

da Silva, T. H. et al. Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol. 126, 488–497 (2022).

Article 

Google Scholar
 

Rosa, L. H. et al. Opportunistic fungi found in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol. 43, 587–596 (2020).

Article 

Google Scholar
 

Gomes, E. C. Q. et al. Pathogenicity of psychrotolerant strains of Antarctic Pseudogmynoascus fungi reveals potential opportunistic profiles. Microbe 5, 100186 (2024).

Article 

Google Scholar
 

Dickson, C. R. et al. Widespread dieback in a foundation species on a sub-Antarctic World Heritage Island: fine-scale patterns and likely drivers. Austral Ecol. 46, 52–64 (2021).

Article 

Google Scholar
 

Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).

Article 
CAS 

Google Scholar
 

Ohlopkova, O. V. et al. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Probl. Virol. 69, 377–389 (2024).

Article 
CAS 

Google Scholar
 

Fountain, A. G. et al. The impact of a large-scale climate event on antarctic ecosystem processes. BioScience 66, 848–863 (2016).

Article 

Google Scholar
 

Benoit, J. B. et al. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 28, 541–549 (2023).

Article 
CAS 

Google Scholar
 

Ropert-Coudert, Y. et al. Two recent massive breeding failures in an Adélie penguin colony call for the creation of a marine protected area in D’Urville Sea/Mertz. Front. Mar. Sci. 5, 264 (2018).

Article 

Google Scholar
 

Descamps, S. et al. Extreme snowstorms lead to large-scale seabird breeding failures in Antarctica. Curr. Biol. 33, R176–R177 (2023).

Article 
CAS 

Google Scholar
 

Selbmann, L. et al. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 21, 1069–1080 (2017).

Article 

Google Scholar
 

Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).

Article 

Google Scholar
 

Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

Article 

Google Scholar
 

Courtright, E. M., Wall, D. H. & Virginia, R. A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antartic Sci. 13, 9–17 (2001).

Article 

Google Scholar
 

Barrett, J. E. et al. Response of a terrestrial polar ecosystem to the March 2022 Antarctic weather anomaly. Earth’s Future 12, e2023EF004306 (2024).

Article 

Google Scholar
 

Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 5, eaaz0888 (2019).

Article 
CAS 

Google Scholar
 

Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic conservation biogeographic regions. Divers. Distrib. 22, 836–840 (2016).

Article 

Google Scholar
 

Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

Article 
CAS 

Google Scholar
 

Zaccara, S., Patiño, J., Convey, P., Vanetti, I. & Cannone, N. Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss Bryum argenteum in Antarctica. Ecol. Evol. 10, 8959–8975 (2020).

Article 

Google Scholar
 

Bohuslavová, O. et al. Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol. 41, 2221–2232 (2018).

Article 

Google Scholar
 

Parada-Pozo, G. et al. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiol. Ecol. 98, fiac099 (2022).

Article 

Google Scholar