Louzada, K. L., Stewart, S. T., Weiss, B. P., Gattacceca, J. & Bezaeva, N. S. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290, 90–101 (2010).
Louzada, K. L. et al. Impact demagnetization of the Martian crust: current knowledge and future directions. Earth Planet. Sci. Lett. 305, 257–269 (2011).
Lillis, R. J., Stewart, S. T. & Manga, M. Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. Planets 118, 1045–1062 (2013).
Mittelholz, A., Johnson, C. L., Feinberg, J. M., Langlais, B. & Phillips, R. J. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, 1–7 (2020).
Mittelholz, A. et al. Magnetic field signatures of craters on Mars. Geophys. Res. Lett. 51, 1–10 (2024).
Rochette, P. Crustal magnetization of Mars controlled by lithology or cooling rate in a reversing dynamo? Geophys. Res. Lett. 33, 2006–2009 (2006).
Steele, S. C. et al. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat. Commun. 15, 6831 (2024).
Gattacceca, J. et al. Unraveling the simultaneous shock magnetization and demagnetization of rocks. Phys. Earth Planet. Inter. 182, 42–49 (2010).
Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1488–1511 (2013).
Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets 122, 2294–2311 (2017).
Arkani-Hamed, J. Timing of the Martian core dynamo. J. Geophys. Res. Planets 109, E03006 (2004).
Gilder, S. A., Pohl, J. & Eitel, M. Magnetic signatures of terrestrial meteorite impact craters: a summary. in Magnetic Fields in the Solar System (eds. Lühr, H., Wicht, J., Gilder, S. A. & Holschneider, M.) vol. 448 357–382 (Springer International Publishing, 2018).
Mohit, P. S. & Arkani-Hamed, J. Impact demagnetization of the Martian crust. Icarus 168, 305–317 (2004).
Tiwari, S., Joshi, G., Phukon, P., Agarwal, A. & Venkateshwarlu, M. Emplacement of monomict breccia and crater size estimate at the Dhala impact structure, India. Meteorit. Planet. Sci. 60, 663–679 (2025).
Markandeyulu, A. et al. Application of high resolution airborne geophysical data in geological modelling of Mohar Cauldron Complex, Bundelkhand Massif, central India: implications for uranium exploration. Explor. Geophys. 45, 134–146 (2014).
Alva-Valdivia, L. M., Rodríguez-Trejo, A., Morales, J., González-Rangel, J. A. & Agarwal, A. Paleomagnetism and age constraints of historical lava flows from the El Jorullo volcano, Michoacán, Mexico. J. South Am. Earth Sci. 93, 439–448 (2019).
Lattard, D., Engelmann, R., Kontny, A. & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. 111, B12S28 (2006).
Direen, N. G., Pfeiffer, K. M. & Schmidt, P. W. Strong remanent magnetization in pyrrhotite: a structurally controlled example from the Paleoproterozoic Tanami orogenic gold province, northern Australia. Precambrian Res. 165, 96–106 (2008).
Tauxe, L. Paleomagnetic Principles and Practice. vol. 17 (Kluwer Academic Publishers, 2003).
Alva-Valdivia, L. M. et al. Nature inspired synthesis of magnetite nanoparticle aggregates from natural berthierine. RSC Adv. 13, 32054–32062 (2023).
Alva-Valdivia, L. M., Guerrero-Díaz, P., Urrutia-Fucugauchi, J., Agarwal, A. & Caballero-Miranda, C. I. Review of magmatic iron-ore mineralization in central-western Mexico: rock-magnetism and magnetic anomaly modelling of Las Truchas, case study. J. South Am. Earth Sci. 97, 102409 (2020).
Alva-Valdivia, L. M. et al. Paleomagnetism and tectonics from the late Pliocene to late Pleistocene in the Xalapa monogenetic volcanic field, Veracruz, Mexico. GSA Bull 131, 1581–1590 (2019).
Fabian, K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet. Sci. Lett. 213, 337–345 (2003).
Williams, W. et al. Vortex magnetic domain state behavior in the day plot. Geochem. Geophys. Geosyst. 25, e2024GC011462 (2024).
Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240 (1996).
Peters, C. & Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth Parts A/B/C 28, 659–667 (2003).
Muxworthy, A. R. Effect of grain interactions on the frequency dependence of magnetic susceptibility. Geophys. J. Int. 144, 441–447 (2001).
Worm, H. & Jackson, M. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res. Solid Earth 104, 25415–25425 (1999).
Clark, D. A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J. Aust. Geol. Geophys. 17, 83–103 (1997).
Salminen, J., Pesonen, L. J., Reimold, W. U., Donadini, F. & Gibson, R. L. Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa-Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic. Precambrian Res. 168, 167–184 (2009).
Carporzen, L., Weiss, B. P., Gilder, S. A., Pommier, A. & Hart, R. J. Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields. J. Geophys. Res. Planets 117, 1–17 (2012).
Joshi, G., Phukon, P., Agarwal, A. & Ojha, A. K. On the emplacement of the impact melt at the Dhalā impact structure, India. J. Geophys. Res. Planets 128, e2023JE007840 (2023).
Agarwal, A. & Alva-Valdivia, L. M. Curie temperature of weakly shocked target basalts at the Lonar impact crater, India. Earth. Planets Sp 71, 141 (2019).
Agarwal, A., Kontny, A., Kenkmann, T. & Poelchau, M. H. Variation in magnetic fabrics at low shock pressure due to experimental impact cratering. J. Geophys. Res. Solid Earth 124, 9095–9108 (2019).
Reznik, B., Kontny, A., Fritz, J. & Gerhards, U. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst. 17, 2374–2393 (2016).
Reznik, B., Kontny, A. & Fritz, J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 52, 1495–1504 (2017).
Pati et al. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization. Tectonophysics 649, 18–32 (2015).
Onorato, P. I. K., Uhlmann, D. R. & Simonds, C. H. The thermal history of the Manicouagan Impact Melt Sheet, Quebec. J. Geophys. Res. Solid Earth 83, 2789–2798 (1978).
Nagy, L. et al. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales. Proc. Natl. Acad. Sci. USA. 114, 10356–10360 (2017).
Gattacceca, J. et al. Paleomagnetism and rock magnetism of east and west Clearwater Lake impact structures. Can. J. Earth Sci. 56, 983–993 (2019).
Behera, S. S., Tiwari, S., Pandey, A. K., Agarwal, A. & Ojha, A. K. The probable direction of impact at Dhala impact structure, India deciphered from microfracture intensity and X-ray diffractometry: a new potential impact direction indicator. Earth Planets 1–11 https://doi.org/10.1186/s40623-024-02028-1 (2024).
Gattacceca, J., Lamali, A., Rochette, P., Boustie, M. & Berthe, L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007).
Gattacceca, J. et al. Investigating impact demagnetization through laser impacts and SQUID microscopy. Geology 34, 333–336 (2006).
Roberts, A. P. et al. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res. Solid Earth 122, 9534–9558 (2017).
Bezaeva, N. S., Rochette, P., Gattacceca, J., Sadykov, R. A. & Trukhin, V. I. Pressure demagnetization of the Martian crust: ground truth from SNC meteorites. Geophys. Res. Lett. 34, 2–5 (2007).
Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A. & Trukhin, V. I. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa. Phys. Earth Planet. Inter. 179, 7–20 (2010).
Gilder, Goff, S. A., Le, M. & Chervin, J.-C. Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts. High Press. Res. 26, 539–547 (2006).
Jackson, M., Borradaile, G., Hudleston, P. & Banerjee, S. Experimental deformation of synthetic magnetite-bearing calcite sandstones: effects on remanence, bulk magnetic properties, and magnetic anisotropy. J. Geophys. Res. 98, 383–401 (1993).
Louzada, K. L., Stewart, S. T. & Weiss, B. P. Effect of shock on the magnetic properties of pyrrhotite, the Martian crust, and meteorites. Geophys. Res. Lett. 34, 1–5 (2007).
Tikoo, S. M. et al. Preservation and detectability of shock-induced magnetization. J. Geophys. Res. Planets 120, 1461–1475 (2015).
Nagata, T. & Carleton, B. J. Notes on piezo-remanent magnetization of igneous rocks. J. Geomagn. Geoelectr. 20, 115–127 (1968).
Nagata, T. Basic magnetic properties of rocks under the effects of mechanical stresses. Tectonophysics 9, 167–195 (1970).
Gilder, S. A., LeGoff, M., Chervin, J. C. & Peyronneau, J. Magnetic properties of single and multi-domain magnetite under pressures from 0 to 6 GPa. Geophys. Res. Lett. 31, 1–5 (2004).
Nagata, T. Main characteristics of piezo-magnetization and their qualitative interpretation. J. Geomagn. Geoelectr. 18, 81–97 (1966).
Pati, J. K. et al. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteorit. Planet. Sci. 52, 722–736 (2017).
Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers. (Cambridge University Press, 1997).
Kuzina, D. M. et al. Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteorit. Planet. Sci. 57, 1846–1860 (2022).
Mendes, B., Kontny, A., Dudzisz, K. & Wilke, F. Ries magnetic mineralogy: exploring impact and post-impact evolution of crater magnetism. Meteorit. Planet. Sci. 59, 1577–1609 (2024).
O’Keefe, J. D. & Ahrens, T. J. Impact-induced melting of planetary surfaces. in Large Meteorite Impacts and Planetary Evolution (eds. Dressier, B. O., Grieve, R. A. F. & Sharpton, V. L.) 0 (Geological Society of America, https://doi.org/10.1130/SPE293-p103.1992).
Plescia, J. B. & Cintala, M. J. Impact melt in small lunar highland craters. J. Geophys. Res. Planets 117, 1–12 (2012).
Kletetschka, G., Kavkova, R. & Ucar, H. Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe. New Mexico. Sci. Rep. 11, 1–13 (2021).
Narrett, I. S. et al. Impact plasma amplification of the ancient lunar dynamo. Sci. Adv. 11, 1–11 (2025).
Carporzen, L., Gilder, S. A. & Hart, R. J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005).
Dunlop, D. J. & Arkani-Hamed, J. Magnetic minerals in the Martian crust. J. Geophys. Res. Planets 110, 1–11 (2005).
Rochette, P. et al. Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteorit. Planet. Sci. 40, 529–540 (2005).
Pati, Reimold, W. U., Koeberl, C. & Pati, P. The Dhala structure, Bundelkhand craton, central india-eroded remnant of a large paleoproterozoic impact structure. Meteorit. Planet. Sci. 43, 1383–1398 (2008).
Saha, L. et al. Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies. Geol. Mag. 153, 179–192 (2016).
Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Res. 198–199, 51–76 (2012).
Deb, T. & Bhattacharyya, T. Earth-Science Reviews The evolution of the fracture systems under progressive sinistral shear in the Bundelkhand Craton, Central India: a review and new insights. Earth Sci. Rev 235, 104238 (2022).
Singh, A. K. et al. Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India. Earth Surf. Process. Landforms 46, 1482–1503 (2021).
Agarwal, A., Kumar, S., Joshi, G. & Agarwal, K. K. Evidence for shock provides insight into the formation of the central elevated area in the Dhala impact structure, India. Meteorit. Planet. Sci. 55, 2772–2779 (2020).
Petrovský, E. & Kapička, A. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res. Solid Earth 111, B12S27 (2006).
Paterson, G. A., Zhao, X., Jackson, M. & Heslop, D. Measuring, processing, and analyzing hysteresis data. Geochem. Geophys. Geosyst. 19, 1925–1945 (2018).
Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 107, EPM 4-1–EPM 4-22 (2002).
Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. Solid Earth 107, EPM 5-1–EPM 5-15 (2002).
Lurcock, P. C. & Wilson, G. S. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochem. Geophys. Geosyst. 13, 1–6 (2012).
Fisher, R. A. Dispersion on a sphere. Proc. R. Soc. London. A. Math. Phys. Sci. 217, 295–305 (1953).
Clark, D. A. & Emerson, J. B. Notes on rock magnetization characteristics in applied geophysical studies. Explor. Geophys. 22, 547–555 (1991).
Pandey, A. K., Agarwal, A., Joshi, G., Sangode, S. J. & Venkateshwarlu, M. Data set of Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India. https://doi.org/10.6084/m9.figshare.30851126 (2025).
Jain, S. C., Gaur, V. P., Srivastava, S. K., Nambiar, K. V. & Saxena, H. P. Recent find of a cauldron structure in Bundelkhand Craton. Geol. Surv. India Spec. Publ. 289, 297 (2001).
Day, R., Fuller, M. & Schmidt, V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977).