Brown, P. G. et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013).
Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).
Sárneczky, K. 2023 CX1. Minor Planet Electron. Circ. 2024-C103, 1 (2024).
Colas, F. et al. The FRIPON and Vigie-Ciel networks. In Proc. International Meteor Conference (eds Rault, J.-L. & Roggemans, P.) 34–38 (International Meteor Organization, 2014).
Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).
Jenniskens, P. & Colas, F. 2023 CX1. Cent. Bur. Electron. Telegr. 5221, 1 (2023).
Zanda, B. et al. Recovery and planned study of the Saint-Pierre-le-Viger meteorite: an achievement of the FRIPON/Vigie-Ciel citizen science program. LPI Contrib. 2990, 6206 (2023).
Gattacceca, J. et al. The Meteoritical Bulletin, No. 112. Meteorit. Planet. Sci. 59, 1820–1823 (2024).
Bischoff, A. et al. Saint-Pierre-le-Viger (L5–6) from asteroid 2023 CX1 recovered in Normandy, France—220 years after the historic fall of L’Aigle (L6 breccia) in the neighborhood. Meteorit. Planet. Sci. 58, 1385–1398 (2023).
Devogèle, M. et al. Aperture photometry on asteroid trails: detection of the fastest rotating near-Earth object. Astron. Astrophys. 689, A63 (2024).
Popova, O., Borovička, J. & Campbell-Brown, M. D. in Meteoroids: Sources of Meteors on Earth and Beyond (eds Ryabova, G. O. et al.) 9 (Cambridge Univ. Press, 2019).
Fadeenko, Y. I. Destruction of meteoroids in the atmosphere. Combust. Explos. Shock Waves 3, 172–174 (1967).
Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).
Borovička, J., Spurný, P. & Shrbený, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).
Jenniskens, P. et al. Bolide fragmentation: what parts of asteroid 2008 TC3 survived to the ground? Meteorit. Planet. Sci. 57, 1641–1664 (2022).
Whipple, A. L. Lyapunov times of the inner asteroids. Icarus 115, 347–353 (1995).
Swindle, T. D., Kring, D. A. & Weirich, J. R. in Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences (eds Jourdan, F. et al.) 333–347 (Geological Society, 2014).
Herzog, G. F. & Caffee, M. W. in Meteorites and Cosmochemical Processes (ed. Davis, A. M.) 419–454 (Elsevier, 2014).
Brown, P. G. et al. The Golden meteorite fall: fireball trajectory, orbit, and meteorite characterization. Meteorit. Planet. Sci. 58, 1773–1807 (2023).
Povinec, P. P. et al. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planet. Space Sci. 186, 104914 (2020).
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).
Ceplecha, Z., Spurný, P., Borovička, J. & Keclikova, J. Atmospheric fragmentation of meteoroids. Astron. Astrophys. 279, 615–626 (1993).
Borovička, J. & Spurný, P. The Carancas meteorite impact-encounter with a monolithic meteoroid. Astron. Astrophys. 485, L1–L4 (2008).
Brown, P. et al. Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res.: Planets 113, E09007 (2008).
Borovička, J., Spurný, P., Grigore, V. I. & Svoreň, J. The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids. Planet. Space Sci. 143, 147–158 (2017).
Vida, D. et al. Novo Mesto meteorite fall—trajectory, orbit, and fragmentation analysis from optical observations. In Proc. Europlanet Science Congress 2021 https://doi.org/10.5194/epsc2021-139 (Copernicus Meetings, 2021).
Vida, D. et al. Accurate characterization of metre-sized impactors through casual bolide observations—Novo Mesto superbolide as evidence for a new class of high-risk objects. In Proc. 8th IAA Planetary Defense Conference (International Academy of Astronautics, 2023).
Jenniskens, P. et al. Orbit and origin of the LL7 chondrite Dishchii’bikoh (Arizona). Meteorit. Planet. Sci. 55, 535–557 (2020).
Morrison, D. Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact. Technical Memorandum NASA/TM–220174 (NASA, 2018).
Trigo-Rodríguez, J. M. et al. A numerical approach to study ablation of large bolides: application to Chelyabinsk. Adv. Astron. 2021, 8852772 (2021).
Moskovitz, N. A. et al. A common origin for dynamically associated near-Earth asteroid pairs. Icarus 333, 165–176 (2019).
Mommert, M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 18, 47–53 (2017).
Gaia Collaboration. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).
Bowell, E. et al. in Asteroids II (eds Binzel, R. P. et al.) 524–556 (Univ. Arizona Press, 1989).
Pál, A. FITSH: a software package for image processing. Mon. Not. R. Astron. Soc. 421, 1825–1837 (2012).
Colomé, J. et al. The OAdM robotic observatory. Adv. Astron. 2010, 183016 (2010).
Raab, H. Astrometrica: astrometric data reduction of CCD images. Astrophys. Source Code Library ascl:1230.012 (2012).
Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).
Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011).
Berthier, J., Carry, B., Mahlke, M. & Normand, J. SsODNet: Solar System Open Database Network. Astron. Astrophys. 671, A151 (2023).
DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).
Usui, F. et al. Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite AKARI. Astrophys. J. 762, 56 (2013).
Eberhardt, P., Geiss, J. & Lutz, H. Neutrons in meteorites. Earth Sci. Meteorit. 34, 143–168 (1963).
Wieler, R. et al. Exposure history of the Torino meteorite. Meteorit. Planet. Sci. 31, 265–272 (1996).
Leya, I. & Masarik, J. Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 44, 1061–1086 (2009).
Leya, I., Hirtz, J. & David, J.-C. Galactic cosmic rays, cosmic-ray variations, and cosmogenic nuclides in meteorites. Astrophys. J. 910, 136 (2021).
Borovička, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astron. Inst. Czechoslov. 41, 391 (1990).
Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A97 (2022).
Vida, D., Gural, P. S., Brown, P. G., Campbell-Brown, M. & Wiegert, P. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2019).
Ceplecha, Z. & Revelle, D. O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35 (2005).
Edwards, W. N., Brown, P. G. & ReVelle, D. O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).
Ens, T. A., Brown, P. G., Edwards, W. N. & Silber, E. Infrasound production by bolides: a global statistical study. J. Atmos. Sol.-Terr. Phys. 80, 208–229 (2012).
Gi, N. & Brown, P. G. Refinement of bolide characteristics from infrasound measurements. Planet. Space Sci. 143, 169–181 (2017).
ReVelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. NY Acad. Sci. 822, 284–302 (1997).
RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France. RESIF Information System https://doi.org/10.15778/RESIF.FR (1995).
Virieux, J., Garnier, N., Blanc, E. & Dessa, J.-X. Paraxial ray tracing for atmospheric wave propagation. Geophys. Res. Lett. 31, L20106 (2004).
Listowski, C. et al. Stratospheric gravity waves impact on infrasound transmission losses across the International Monitoring System. Pure Appl. Geophys. 181, 33 (2024).
Moré, J. J. in Numerical Analysis (ed. Watson, G. A.) 105–116 (Springer, 2006).
Riebe, M. E. I. et al. Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments. Meteorit. Planet. Sci. 52, 2353–2374 (2017).
Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).
Leya, I. et al. Calibration of cosmogenic noble gas production based on 36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique. Meteorit. Planet. Sci. 50, 1863–1879 (2015).
Martin, I. H. M. J. A=71. Zn, Ga, Ge, As, Se, Br, Kr. Nucl. Data Sheets Sect. B 1, 13–26 (1966).
Nishiizumi, K., Regnier, S. & Marti, K. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. 50, 156–170 (1980).
Dalcher, N. et al. Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1. Refined production rates for cosmogenic 21Ne and 38Ar. Meteorit. Planet. Sci. 48, 1841–1862 (2013).
Lewis, J. A. & Jones, R. H. Phosphate and feldspar mineralogy of equilibrated L chondrites: the record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteorit. Planet. Sci. 51, 1886–1913 (2016).
Povinec, P., Sýkora, I., Ferrière, L. & Koeberl, C. Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. J. Radioanal. Nucl. Chem. 324, 349–357 (2020).
Kováčik, A., Sýkora, I. & Povinec, P. P. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J. Radioanal. Nucl. Chem. 298, 665–672 (2013).
Eugster, O., Busemann, H., Lorenzetti, S. & Terribilini, D. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002).
Martschini, M. et al. 5 years of ion-laser interaction mass spectrometry—status and prospects of isobar suppression in IAMS by lasers. Radiocarbon 64, 555–568 (2022).
Lachner, J. et al. Highly sensitive 26Al measurements by ion-laser-interaction mass spectrometry. Int. J. Mass Spectrom. 465, 116576 (2021).
Rugel, G. et al. The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl. Instrum. Methods Phys. Res. Sect. B 370, 94–100 (2016).
Cripe, J. D. & Moore, C. B. Total sulfur content of ordinary chondrites. Meteoritics 10, 387 (1975).
Grady, M. M., Wright, I. P. & Pillinger, C. T. A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics 24, 147 (1989).
Hashizume, K. & Sugiura, N. Nitrogen isotopes in bulk ordinary chondrites. Geochim. Cosmochim. Acta 59, 4057–4069 (1995).
Graf, T. et al. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54, 2511–2520 (1990).
Bischoff, A. et al. The anomalous polymict ordinary chondrite breccia of Elmshorn (H3-6)—late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8 Gyr ago. Meteorit. Planet. Sci. 59, 2321–2356 (2024).
Standish, E. M. JPL Planetary and Lunar Ephemerides. Interoffice Memo DE405/LE405 (JPL, 1998).
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).
Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 77 (2023).
Egal, A. et al. 2023 CX1 – Saint-Pierre-le-Viger data. Zenodo https://doi.org/10.5281/zenodo.15328378 (2025).