Brown, P. G. et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013).

Article 
ADS 

Google Scholar
 

Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).

Article 
ADS 

Google Scholar
 

Sárneczky, K. 2023 CX1. Minor Planet Electron. Circ. 2024-C103, 1 (2024).


Google Scholar
 

Colas, F. et al. The FRIPON and Vigie-Ciel networks. In Proc. International Meteor Conference (eds Rault, J.-L. & Roggemans, P.) 34–38 (International Meteor Organization, 2014).

Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).

Article 

Google Scholar
 

Jenniskens, P. & Colas, F. 2023 CX1. Cent. Bur. Electron. Telegr. 5221, 1 (2023).


Google Scholar
 

Zanda, B. et al. Recovery and planned study of the Saint-Pierre-le-Viger meteorite: an achievement of the FRIPON/Vigie-Ciel citizen science program. LPI Contrib. 2990, 6206 (2023).

ADS 

Google Scholar
 

Gattacceca, J. et al. The Meteoritical Bulletin, No. 112. Meteorit. Planet. Sci. 59, 1820–1823 (2024).

Article 

Google Scholar
 

Bischoff, A. et al. Saint-Pierre-le-Viger (L5–6) from asteroid 2023 CX1 recovered in Normandy, France—220 years after the historic fall of L’Aigle (L6 breccia) in the neighborhood. Meteorit. Planet. Sci. 58, 1385–1398 (2023).

Article 
ADS 

Google Scholar
 

Devogèle, M. et al. Aperture photometry on asteroid trails: detection of the fastest rotating near-Earth object. Astron. Astrophys. 689, A63 (2024).

Article 

Google Scholar
 

Popova, O., Borovička, J. & Campbell-Brown, M. D. in Meteoroids: Sources of Meteors on Earth and Beyond (eds Ryabova, G. O. et al.) 9 (Cambridge Univ. Press, 2019).

Fadeenko, Y. I. Destruction of meteoroids in the atmosphere. Combust. Explos. Shock Waves 3, 172–174 (1967).

Article 

Google Scholar
 

Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).

Article 
ADS 

Google Scholar
 

Borovička, J., Spurný, P. & Shrbený, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).

Article 
ADS 

Google Scholar
 

Jenniskens, P. et al. Bolide fragmentation: what parts of asteroid 2008 TC3 survived to the ground? Meteorit. Planet. Sci. 57, 1641–1664 (2022).

Article 
ADS 

Google Scholar
 

Whipple, A. L. Lyapunov times of the inner asteroids. Icarus 115, 347–353 (1995).

Article 
ADS 

Google Scholar
 

Swindle, T. D., Kring, D. A. & Weirich, J. R. in Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences (eds Jourdan, F. et al.) 333–347 (Geological Society, 2014).

Herzog, G. F. & Caffee, M. W. in Meteorites and Cosmochemical Processes (ed. Davis, A. M.) 419–454 (Elsevier, 2014).

Brown, P. G. et al. The Golden meteorite fall: fireball trajectory, orbit, and meteorite characterization. Meteorit. Planet. Sci. 58, 1773–1807 (2023).

Article 
ADS 

Google Scholar
 

Povinec, P. P. et al. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planet. Space Sci. 186, 104914 (2020).

Article 

Google Scholar
 

Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).

Article 

Google Scholar
 

Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).

Article 

Google Scholar
 

Ceplecha, Z., Spurný, P., Borovička, J. & Keclikova, J. Atmospheric fragmentation of meteoroids. Astron. Astrophys. 279, 615–626 (1993).

ADS 

Google Scholar
 

Borovička, J. & Spurný, P. The Carancas meteorite impact-encounter with a monolithic meteoroid. Astron. Astrophys. 485, L1–L4 (2008).

Article 
ADS 

Google Scholar
 

Brown, P. et al. Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res.: Planets 113, E09007 (2008).

Article 
ADS 

Google Scholar
 

Borovička, J., Spurný, P., Grigore, V. I. & Svoreň, J. The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids. Planet. Space Sci. 143, 147–158 (2017).

Article 
ADS 

Google Scholar
 

Vida, D. et al. Novo Mesto meteorite fall—trajectory, orbit, and fragmentation analysis from optical observations. In Proc. Europlanet Science Congress 2021 https://doi.org/10.5194/epsc2021-139 (Copernicus Meetings, 2021).

Vida, D. et al. Accurate characterization of metre-sized impactors through casual bolide observations—Novo Mesto superbolide as evidence for a new class of high-risk objects. In Proc. 8th IAA Planetary Defense Conference (International Academy of Astronautics, 2023).

Jenniskens, P. et al. Orbit and origin of the LL7 chondrite Dishchii’bikoh (Arizona). Meteorit. Planet. Sci. 55, 535–557 (2020).

Article 
ADS 

Google Scholar
 

Morrison, D. Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact. Technical Memorandum NASA/TM–220174 (NASA, 2018).

Trigo-Rodríguez, J. M. et al. A numerical approach to study ablation of large bolides: application to Chelyabinsk. Adv. Astron. 2021, 8852772 (2021).

Article 
ADS 

Google Scholar
 

Moskovitz, N. A. et al. A common origin for dynamically associated near-Earth asteroid pairs. Icarus 333, 165–176 (2019).

Article 
ADS 

Google Scholar
 

Mommert, M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 18, 47–53 (2017).

Article 
ADS 

Google Scholar
 

Gaia Collaboration. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

Article 

Google Scholar
 

Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

Article 
ADS 

Google Scholar
 

Bowell, E. et al. in Asteroids II (eds Binzel, R. P. et al.) 524–556 (Univ. Arizona Press, 1989).

Pál, A. FITSH: a software package for image processing. Mon. Not. R. Astron. Soc. 421, 1825–1837 (2012).

Article 
ADS 

Google Scholar
 

Colomé, J. et al. The OAdM robotic observatory. Adv. Astron. 2010, 183016 (2010).

Article 
ADS 

Google Scholar
 

Raab, H. Astrometrica: astrometric data reduction of CCD images. Astrophys. Source Code Library ascl:1230.012 (2012).

Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).

Article 
ADS 

Google Scholar
 

Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011).

Article 
ADS 

Google Scholar
 

Berthier, J., Carry, B., Mahlke, M. & Normand, J. SsODNet: Solar System Open Database Network. Astron. Astrophys. 671, A151 (2023).

Article 
ADS 

Google Scholar
 

DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).

Article 
ADS 

Google Scholar
 

Usui, F. et al. Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite AKARI. Astrophys. J. 762, 56 (2013).

Article 
ADS 

Google Scholar
 

Eberhardt, P., Geiss, J. & Lutz, H. Neutrons in meteorites. Earth Sci. Meteorit. 34, 143–168 (1963).


Google Scholar
 

Wieler, R. et al. Exposure history of the Torino meteorite. Meteorit. Planet. Sci. 31, 265–272 (1996).

Article 
ADS 

Google Scholar
 

Leya, I. & Masarik, J. Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 44, 1061–1086 (2009).

Article 
ADS 

Google Scholar
 

Leya, I., Hirtz, J. & David, J.-C. Galactic cosmic rays, cosmic-ray variations, and cosmogenic nuclides in meteorites. Astrophys. J. 910, 136 (2021).

Article 
ADS 

Google Scholar
 

Borovička, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astron. Inst. Czechoslov. 41, 391 (1990).

ADS 

Google Scholar
 

Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A97 (2022).


Google Scholar
 

Vida, D., Gural, P. S., Brown, P. G., Campbell-Brown, M. & Wiegert, P. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2019).

Article 
ADS 

Google Scholar
 

Ceplecha, Z. & Revelle, D. O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35 (2005).

Article 
ADS 

Google Scholar
 

Edwards, W. N., Brown, P. G. & ReVelle, D. O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).

Article 
ADS 

Google Scholar
 

Ens, T. A., Brown, P. G., Edwards, W. N. & Silber, E. Infrasound production by bolides: a global statistical study. J. Atmos. Sol.-Terr. Phys. 80, 208–229 (2012).

Article 
ADS 

Google Scholar
 

Gi, N. & Brown, P. G. Refinement of bolide characteristics from infrasound measurements. Planet. Space Sci. 143, 169–181 (2017).

Article 
ADS 

Google Scholar
 

ReVelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. NY Acad. Sci. 822, 284–302 (1997).

Article 
ADS 

Google Scholar
 

RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France. RESIF Information System https://doi.org/10.15778/RESIF.FR (1995).

Virieux, J., Garnier, N., Blanc, E. & Dessa, J.-X. Paraxial ray tracing for atmospheric wave propagation. Geophys. Res. Lett. 31, L20106 (2004).

Article 
ADS 

Google Scholar
 

Listowski, C. et al. Stratospheric gravity waves impact on infrasound transmission losses across the International Monitoring System. Pure Appl. Geophys. 181, 33 (2024).


Google Scholar
 

Moré, J. J. in Numerical Analysis (ed. Watson, G. A.) 105–116 (Springer, 2006).

Riebe, M. E. I. et al. Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments. Meteorit. Planet. Sci. 52, 2353–2374 (2017).

Article 
ADS 

Google Scholar
 

Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).

Article 

Google Scholar
 

Leya, I. et al. Calibration of cosmogenic noble gas production based on 36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique. Meteorit. Planet. Sci. 50, 1863–1879 (2015).

Article 
ADS 

Google Scholar
 

Martin, I. H. M. J. A=71. Zn, Ga, Ge, As, Se, Br, Kr. Nucl. Data Sheets Sect. B 1, 13–26 (1966).

Article 
ADS 

Google Scholar
 

Nishiizumi, K., Regnier, S. & Marti, K. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. 50, 156–170 (1980).

Article 
ADS 

Google Scholar
 

Dalcher, N. et al. Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1. Refined production rates for cosmogenic 21Ne and 38Ar. Meteorit. Planet. Sci. 48, 1841–1862 (2013).

Article 
ADS 

Google Scholar
 

Lewis, J. A. & Jones, R. H. Phosphate and feldspar mineralogy of equilibrated L chondrites: the record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteorit. Planet. Sci. 51, 1886–1913 (2016).

Article 
ADS 

Google Scholar
 

Povinec, P., Sýkora, I., Ferrière, L. & Koeberl, C. Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. J. Radioanal. Nucl. Chem. 324, 349–357 (2020).

Article 

Google Scholar
 

Kováčik, A., Sýkora, I. & Povinec, P. P. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J. Radioanal. Nucl. Chem. 298, 665–672 (2013).

Article 

Google Scholar
 

Eugster, O., Busemann, H., Lorenzetti, S. & Terribilini, D. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002).

Article 
ADS 

Google Scholar
 

Martschini, M. et al. 5 years of ion-laser interaction mass spectrometry—status and prospects of isobar suppression in IAMS by lasers. Radiocarbon 64, 555–568 (2022).

Article 

Google Scholar
 

Lachner, J. et al. Highly sensitive 26Al measurements by ion-laser-interaction mass spectrometry. Int. J. Mass Spectrom. 465, 116576 (2021).

Article 

Google Scholar
 

Rugel, G. et al. The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl. Instrum. Methods Phys. Res. Sect. B 370, 94–100 (2016).

Article 
ADS 

Google Scholar
 

Cripe, J. D. & Moore, C. B. Total sulfur content of ordinary chondrites. Meteoritics 10, 387 (1975).

ADS 

Google Scholar
 

Grady, M. M., Wright, I. P. & Pillinger, C. T. A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics 24, 147 (1989).

Article 
ADS 

Google Scholar
 

Hashizume, K. & Sugiura, N. Nitrogen isotopes in bulk ordinary chondrites. Geochim. Cosmochim. Acta 59, 4057–4069 (1995).

Article 
ADS 

Google Scholar
 

Graf, T. et al. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54, 2511–2520 (1990).

Article 
ADS 

Google Scholar
 

Bischoff, A. et al. The anomalous polymict ordinary chondrite breccia of Elmshorn (H3-6)—late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8 Gyr ago. Meteorit. Planet. Sci. 59, 2321–2356 (2024).

Article 

Google Scholar
 

Standish, E. M. JPL Planetary and Lunar Ephemerides. Interoffice Memo DE405/LE405 (JPL, 1998).

Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

Article 
ADS 

Google Scholar
 

Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 77 (2023).

Article 

Google Scholar
 

Egal, A. et al. 2023 CX1 – Saint-Pierre-le-Viger data. Zenodo https://doi.org/10.5281/zenodo.15328378 (2025).