Feigin VL, et al. Pragmatic solutions to reduce the global burden of stroke: a world stroke Organization–Lancet neurology commission. Lancet Neurol. 2023;1:1–47.


Google Scholar
 

Nitsche MA, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15:619–26.

PubMed 

Google Scholar
 

Jacobson L, Koslowsky M, Lavidor M. tDCS Polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216:1–10.

PubMed 

Google Scholar
 

Herrmann CS, Rach S, Neuling T, StrĂĽber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:279.

PubMed 
PubMed Central 

Google Scholar
 

Nejati V, Salehinejad MA, Nitsche MA, Najian A, Javadi AH. Transcranial direct current stimulation improves executive dysfunctions in ADHD: implications for inhibitory control, interference control, working memory, and cognitive flexibility. J Atten Disord. 2020;24:1928–43.

PubMed 

Google Scholar
 

Fregni F, et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J Neuropsychopharmacol. 2021;24:256–313.

PubMed 

Google Scholar
 

Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci. 2011;29:395–409.

PubMed 
PubMed Central 

Google Scholar
 

Liu J, Tan G, Wang J, Wei Y, Sheng Y, Chang H, Xie Q, Liu H. Closed-loop construction and analysis of cortico-muscular-cortical functional network after stroke. IEEE Trans Med Imaging. 2022;41:1575–86.

PubMed 

Google Scholar
 

Du J, Yang F, Hu J, Hu J, Xu Q, Cong N, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NeuroImage: Clinical. 2019;21:101620.

PubMed 

Google Scholar
 

Fregni F, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord. 2006;21:1693–702.

PubMed 

Google Scholar
 

Fregni F, Boggio PS, Mansur CG. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16:1551–5.

PubMed 

Google Scholar
 

Hummel F, Celnik P, Giraux P. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128:490–9.

PubMed 

Google Scholar
 

Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair. 2005;19:14–9.

PubMed 

Google Scholar
 

Naros G, Gharabaghi A. Physiological and behavioral effects of β-tACS on brain self-regulation in chronic stroke. Brain Stimul. 2017;10:251–9.

PubMed 

Google Scholar
 

Santos Ferreira I, et al. Searching for the optimal tDCS target for motor rehabilitation. J Neural Eng. 2019;16:1–12.


Google Scholar
 

Wade S, Hammond G. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. Eur J Neurosci. 2015;41:1597–602.

PubMed 

Google Scholar
 

Kang EK, Paik NJ. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. J Exp Stroke Transl Med. 2011;3:4.


Google Scholar
 

Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24:590–6.

PubMed 

Google Scholar
 

Ciechanski P, Kirton A. Transcranial direct-current stimulation can enhance motor learning in children. Cereb Cortex. 2017;27:2758–67.

PubMed 

Google Scholar
 

Notturno F, Marzetti L, Pizzella V, Uncini A, Zappasodi F. Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Hum Brain Mapp. 2014;35:2220–32.

PubMed 

Google Scholar
 

Kim H, et al. Optimal stimulation site for rtms to improve motor function: anatomical hand knob vs. hand motor hotspot. Neurosci Lett. 2021;740:135424.

CAS 
PubMed 

Google Scholar
 

Hu C, Ti CHE, Yuan K, Chen C, Khan A, Shi X, Tong RK. Y. Effects of high-definition tDCS targeting individual motor hotspot with EMG-driven robotic hand training on upper extremity motor function: a pilot randomized controlled trial. J NeuroEng Rehabil. 2024;21:169.

PubMed 
PubMed Central 

Google Scholar
 

Krause V, Meier A, Dinkelbach L, Pollok B. Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence. Front Behav Neurosci. 2016;10:4.

PubMed 
PubMed Central 

Google Scholar
 

Hamoudi M, Schambra HM, Fritsch B, Schoechlin-Marx A, Weiller C, Cohen LG, Reis J. Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil Neural Repair. 2018;32:295–308.

PubMed 
PubMed Central 

Google Scholar
 

Pantovic M, Albuquerque LL, d., Mastrantonio S, Pomerantz AS, Wilkins EW, Riley ZA, Guadagnoli MA, Poston B. Transcranial direct current stimulation of primary motor cortex over multiple days improves motor learning of a complex overhand throwing task. Brain Sci. 2023;13:1441.

PubMed 
PubMed Central 

Google Scholar
 

Kim J, et al. Comparison of hemodynamic changes after repetitive transcranial magnetic stimulation over the anatomical hand knob and hand motor hotspot: a functional near-infrared spectroscopy study. Restor Neurol Neurosci. 2020;38:407–17.

CAS 
PubMed 

Google Scholar
 

Sriraman A, Oishi T, Madhavan S. Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 2014;1581:23–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Inukai Y, Saito K, Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Onishi H. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci. 2016;10:668.

PubMed 
PubMed Central 

Google Scholar
 

Yamaguchi T, Moriya K, Tanabe S, Kondo K, Otaka Y, Tanaka S. Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers. J Neuroeng Rehabil. 2020;17:1–13.


Google Scholar
 

Meng H, Houston M, Dias N, Guo C, Francisco G, Zhang Y, et al. Efficacy of high-definition transcranial alternating current stimulation (HD-tACS) at the M1 hotspot versus C3 site in modulating corticospinal tract excitability. Biomedicines. 2024;12:2635.

PubMed 
PubMed Central 

Google Scholar
 

Pozdniakov I, Vorobiova AN, Galli G, Rossi S, Feurra M. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci Rep. 2021;11:3854.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tan G, Wang J, Liu J, Sheng Y, Xie Q, Liu H. A framework for quantifying the effects of transcranial magnetic stimulation on motor recovery from hemiparesis: corticomuscular network. J Neural Eng. 2022;19:026053. https://doi.org/10.1088/1741-2552/ac636b

Article 
PubMed 
PubMed Central 

Google Scholar
 

Agboada D, et al. Semi-automated motor hotspot search (SAMHS): a framework toward an optimised approach for motor hotspot identification. Front Hum Neurosci. 2023;17:1228859.

PubMed 
PubMed Central 

Google Scholar
 

Meincke J, Hewitt M, Batsikadze G, Liebetanz D. Automated TMS hotspot-hunting using a closed loop threshold-based algorithm. Neuroimage. 2016;124:509–17.

PubMed 

Google Scholar
 

Weiss C, et al. Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage. 2013;66:531–42.

PubMed 

Google Scholar
 

Kallioniemi E, Pitkänen M, Könönen M, Vanninen R, Julkunen P. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI. J Neurosci Methods. 2016;273:138–48.

PubMed 

Google Scholar
 

Matilainen N, Kataja J, Laakso I. Predicting the hotspot location and motor threshold prior to transcranial magnetic stimulation using electric field modelling. Phys Med Biol. 2023;69:015012.


Google Scholar
 

Choi GY, et al. An artificial neural-network approach to identify motor hotspot for upper-limb based on electroencephalography: a proof-of-concept study. J Neuroeng Rehabil. 2021;18:1–10.


Google Scholar
 

Choi GY, Kim WS, Hwang HJ. Electroencephalography-based a Motor Hotspot Identification Approach Using Deep-Learning. In Proceedings of 2021 9th International Winter Conference on Brain-Computer Interface (BCI), 1–4 (2021).

Choi GY, et al. Motor hotspot localization based on electroencephalography using convolutional neural network in patients with stroke. bioRxiv; 2024. pp. 1–32.

Fong KN, Ting KH, Zhang JJ, Yau CS, Li LS. Event-related desynchronization during mirror visual feedback: a comparison of older adults and people after stroke. Front Hum Neurosci. 2021;15:PMC8200456.


Google Scholar
 

Bartur G, Pratt H, Soroker N. Changes in mu and beta amplitude of the EEG during upper limb movement correlate with motor impairment and structural damage in subacute stroke. Clin Neurophysiol. 2019;130:1644–51.

PubMed 

Google Scholar
 

Li H, et al. EEG changes in time and time-frequency domain during movement preparation and execution in stroke patients. Front Neurol. 2020;14:827.

CAS 

Google Scholar
 

Yoo HJ, Ham J, Duc NT, Lee B. Quantification of stroke lesion volume using epidural EEG in a cerebral ischaemic rat model. Sci Rep. 2021;11:2308.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rubega M, et al. EEG fractal analysis reflects brain impairment after stroke. Entropy. 2021;23:592.

PubMed 
PubMed Central 

Google Scholar
 

Pell G. Use and misuse of likert scales. Med Educ. 2005;39:970.

PubMed 

Google Scholar
 

Carifio J, Perla R. Resolving the 50-year debate around using and misusing likert scales. Med Educ. 2008;42:1150–2.

PubMed 

Google Scholar
 

Niering M, Seifert J. The effects of visual skills training on cognitive and executive functions in stroke patients: a systematic review with meta-analysis. J Neuroeng Rehabil. 2024;21:41.

PubMed 
PubMed Central 

Google Scholar
 

Ludwig KA, Miriani RM, Langhals NB, Joseph MD, Anderson DJ, Kipke DR. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J Neurophysiol. 2009;101:1679–89.

PubMed 

Google Scholar
 

Gustafsson F. Determining the initial states in forward-backward filtering. IEEE Trans Signal Process. 1996;44:988–92.


Google Scholar
 

Mitra SK. Digital signal processing: a computer-based approach. McGraw-Hill High Educ. 2001;ISO:690.


Google Scholar
 

Mammone N, La Foresta F, Morabito FC. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens J. 2011;12:533–42.


Google Scholar
 

Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct. 2011;7:1–15.


Google Scholar
 

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

PubMed 

Google Scholar
 

https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html

Amo Usanos C, Boquete L, de Santiago L, Navarro B, R., Cavaliere C. Induced gamma-band activity during actual and imaginary movements: EEG analysis. Sens. 2020;20:1545.


Google Scholar
 

Amo C, et al. Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks. PLoS One. 2017;12:e0186008.

PubMed 
PubMed Central 

Google Scholar
 

Ginter J Jr, et al. Propagation of EEG activity in the beta and gamma band during movement imagery in humans. Methods Inf Med. 2005;44:106–13.

PubMed 

Google Scholar
 

Ball T, et al. Movement related activity in the high gamma range of the human EEG. Neuroimage. 2008;41:302–10.

PubMed 

Google Scholar
 

Seo JK, Baik S, Lee SH. Simulating the architecture of a termite incipient nest using a convolutional neural network. Ecol Inf. 2018;44:94–100.


Google Scholar
 

Seo JK, et al. Differentiation of the follicular neoplasm on the gray-scale Us by image selection subsampling along with the marginal outline Using convolutional neural network. Biomed Res Int. 2017;1:3098293.


Google Scholar
 

Malkauthekar MD. Analysis of Euclidean distance and Manhattan distance measure in face recognition. In Third International Conference on Computational Intelligence and Information Technology (CIIT 2013), 503–507 (2013).

Sundar BR, Chunduru A, Tiwari R, Gupta A, Muthuganapathy R. Footpoint distance as a measure of distance computation between curves and surfaces. Comput Graph. 2014;38:300–9.


Google Scholar
 

Yu K, Wang X, Li Q, Zhang X, Li X, Li S. Individual morphological brain network construction based on multivariate Euclidean distances between brain regions. Front Hum Neurosci. 2018;12:204.

PubMed 
PubMed Central 

Google Scholar
 

Ahdab R, Ayache SS, Brugières P, Farhat WH, Lefaucheur JP. The hand motor hotspot is not always located in the hand knob: a neuronavigated transcranial magnetic stimulation study. Brain Topogr. 2016;29:590–7.

PubMed 

Google Scholar
 

Malcolm MP, et al. Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol. 2006;117:1037–46.

CAS 
PubMed 

Google Scholar
 

Rubega M, Formaggio E, Molteni F, Guanziroli E, Di Marco R, Baracchini C, et al. EEG fractal analysis reflects brain impairment after stroke. Entropy. 2021;23:592.

PubMed 
PubMed Central 

Google Scholar
 

Vimolratana O, Aneksan B, Siripornpanich V, Hiengkaew V, Prathum T, Jeungprasopsuk W, et al. Effects of anodal tDCS on resting state EEG power and motor function in acute stroke: a randomized controlled trial. J Neuroeng Rehabil. 2024;21:6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dallmer-Zerbe I, Popp F, Lam AP, Philipsen A, Herrmann CS. Transcranial alternating current stimulation (tACS) as a tool to modulate P300amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 2020;33:191–207.

PubMed 
PubMed Central 

Google Scholar
 

Breitling C, et al. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10:1–10.


Google Scholar
 

Brunelin J, et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012;169:719–24.

PubMed 

Google Scholar
 

George MS, et al. A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry. 2000;48:962–70.

CAS 
PubMed 

Google Scholar
 

Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219:14–9.

PubMed 

Google Scholar
 

Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23:482–4.

PubMed 

Google Scholar
 

Padberg F, et al. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci. 2017;267:751–66.

PubMed 

Google Scholar
Â