Ward, B. B. & Nitrification An introduction and overview of the state of the field. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 3–8. (Washington, DC, 2011).
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528 (7583), 504–509 (2015).
Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75 (2), 139–157 (2005).
Huang, X. et al. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil. Biol. Biochem. 119, 83–89 (2018).
Zhang, Q. et al. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soil. Soil. Biol. Biochem. 131, 229–237 (2019).
Yang, X. et al. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 717, 1–12 (2020).
Lin, Y. et al. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Goderma 404, 1–7 (2021).
Li, C., Hu, H. W., Chen, Q. L., Chen, D. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil. Biol. Biochem. 138, 107609 (2019).
Wang, J., Smith, P., Hergoualch, K. & Zou, J. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 185, 106501 (2022).
Ye, J. et al. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant. Sci. 13, 1055900 (2022).
Tokuda, S. & Hayatsu, M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil. Sci. Plant. Nutr. 47 (3), 637–642 (2001).
Karak, T. et al. Major soil chemical properties of the major tea-growing areas in India. Pedosphere 25 (2), 316–328 (2015).
Akiyama, H., Yan, X. & Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in japan: summary of available data. Soil. Sci. Plant. Nutr. 52, 774–787 (2006).
Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11 (5), 1130–1141 (2017).
Takahashi, Y. et al. Enrichment of comammox and nitrite-oxidizing Nitrospira from acid soils. Front. Microbiol. 11, 1737 (2020).
Tomiyama, H. et al. Characteristics of newly isolated nitrifying bacteria from rhizoplane of paddy rice. Microbes Environ. 16 (2), 101–108 (2001).
Satoh, K., Itoh, C., Kang, D. J., Sumida, H. & Takahashi, R. Characteristics of newly isolated ammonia-oxidizing bacteria from acid sulfate soil and the rhizoplane of Leucaena grown in that soil. Soil. Sci. Plant. Nutr. 53, 23–31 (2010).
Bhuiya, Z. H. & Walker, N. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42, 253–257 (1977).
Tago, K. et al. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil. Microbes Environ. 30 (1), 21–28 (2015).
Aigle, A., Prosser, J. I. & Gubry-Rangin, C. The application of high-throughput sequencing technology to analysis of AmoA phylogeny and environmental niche specialization of terrestrial bacterial ammonia-oxidisers. Environ. Microbiol. 14 (3), 1–10 (2019).
Norton, J. M. et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74 (11), 559–572 (2008).
Rice, M. C. et al. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand. Genomic Sci. 11 (46), 1–8 (2016).
Jiang, Q. Q. & Bakken, L. R. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol. Ecol. 30, 171–186 (1999).
Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: A potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7 (12), 699 (2019).
Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. & Stahl, D. A. Phylogenetic probes for analyzing abundance and Spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62 (6), 2156–2162 (1996).
Klotz, M. G. & Stein, L. Y. Genomics of ammonia-oxidizing bacteria and insights into their evolution. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 57–94. (Washington, DC, 2011).
Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
Koper, T. E., El-Sheikh, A. F., Norton, J. M. & Klotz, M. G. Urease-encoding genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 70 (4), 2342–2348 (2004).
Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250 (2015).
Tokuda, S. & Hayatsu, M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil. Sci. Plant. Nutr. 50 (3), 365–374 (2004).
Hirono, Y. & Nonaka, K. Nitrous oxide emissions from green tea fields in japan: contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil. Sci. Plant. Nutr. 58, 384–392 (2012).
Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialization and differentiation. Trends Microbiol. 20 (11), 523–531 (2012).
Zhang, L. M., Hu, H. W., Shen, J. P. & He, J. Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).
Li, Y., Chapman, S. J., Nicol, G. W. & Yao, H. Nitrification and nitrifiers in acidic soils. Soil. Biol. Biochem. 116, 290–301 (2018).
French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G. & Bollmann, A. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78 (16), 5773–5780 (2012).
Ying, J. et al. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil. Biol. Biochem. 107, 10–18 (2017).
Fan, D., Fan, K., Yu, C., Lu, Y. & Wang Xiao-chang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Biomed. Biotechnol. 18 (2), 99–108 (2017).
Tang, S. et al. The Inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Sci. Total Environ. 778, 146328 (2021).
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
Onodera, Y., Nakagawa, T., Takahashi, R. & Tokuyama, T. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ. 25 (1), 28–35 (2010).
Zhu, G. et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 5, 1905–1912 (2011).
Tao, J. et al. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese loess plateau and their responses to nitrogen inputs. Sci. Total Environ. 635, 240–248 (2018).
Banning, N., Maccarone, L., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).
Du, J. et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats. Front. Environ. Sci. 10, 976618 (2022).
Li, X. et al. Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Appl. Soil. Ecol. 157, 103729 (2021).
De Boer, W., Gunnewiek, P. J. A. K. & Laanbroek, H. J. Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil. Biol. Biochem. 27 (2), 127–132 (1995).
Walker, N. & Wickramasinghe, K. N. Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil. Biol. Biochem. 11, 231–236 (1979).
Jumadi, O. et al. Community structure of ammonia oxidizing bacteria and their potential to produce nitrous oxide and carbon dioxide in acid tea soils. Geomicrobiol. J. 25, 381–389 (2008).
Yao, H. et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soil. Appl. Environ. Microbiol. 77 (13), 4618–4625 (2011).
Okamura, K., Takanashi, A., Yamada, T. & Hiraishi, A. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil. J. Phys: Conf. Ser. 352, 012052 (2012).
Wang, X. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil. Biol. Biochem. 84, 28–37 (2015).
Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031–e01018 (2018).
Lourenço, K. S. et al. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front. Microbiol. 9, 1–11 (2018).
Pommering-Röser, A. & Koops, H. P. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol. Res. 160, 27–35 (2005).
Norton, J. M. Diversity and Environmental Distribution of Ammonia-Oxidizing Bacteria. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 39–55. (Washington, DC, 2011).
Allison, S. M. & Prosser, J. I. Urease activity in neutrophilic autotrophic ammonia -oxidizing bacteria isolated from acid soils. Soil. Biol. Biochem. 23 (1), 45–51 (1991).
Thandar, S. M., Ushiki, N., Fujitani, H., Tsuneda, Y. & Sekiguchi & Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1 isolated from autotrophic nitrifying granules of wastewater treatment bioreactor. Front. Microbiol. 7 (1869), 1–14 (2016).
Belser, L. W. & Schmidt, E. L. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett. 7, 213–216 (1980).
Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil. Sci. Plant. Nutr. 39, 219–226 (1993).
Allison, S. M. & Prosser, J. I. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil. Biol. Biochem. 125 (7), 935–941 (1993).
De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E. & Laanbroek, H. J. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57 (12), 3600–3604 (1991).
Suzuki, I., Dular, U. & Kwok, S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas Europaea cells and extracts. J. Bacteriol. 120 (1), 556–558 (1974).
Koper, T. E., Stark, J. M., Habteselassie, M. Y. & Norton, J. M. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol. Ecol. 74 (2), 316–322 (2010).
Jung, M. Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2021).
Berube, P. M. & Stahl, D. A. The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas Europaea. J. Bacteriol. 194 (13), 3448–3456 (2012).
Stein, L. Y. Heterotrophic Nitrification and Nitrifier Denitrification. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 95–114. (Washington, DC, 2011).
Sedlacek, C. J. et al. Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth. mSystems 5 (1), e00562-19 (2020).
Cantaro, J. D., Vilbert, A. C. & Lancaster, K. M. Nitrosomonas Europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA. 113 (52), 14704–14709 (2016).
Elmore, B. O., Bergmann, D. J., Klotz, M. G. & Hooper, A. B. Cytochromes P460 and c’-beta; a new family of high-spin cytochromes c. FEBS Lett. 581 (5), 911–916 (2007).
Shaw, L. J. et al. Nitrosospira spp. Can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8 (2), 214–222 (2005).
IFA. Fertilizer use by crop and country for the 2017–2018 period. International Fertilizer Association (IFA) 2022, Paris, France. Electronic source: (2023). https://www.ifastat.org/consumption/fertilizer-use-by-crop
De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil. Biol. Biochem. 33, 853–866 (2001).
Zorz, J. K., Kozlowski, J. A., Stein, L. Y., Strous, M. & Kleiner, M. Comparative proteomics of three species of ammonia-oxidizing bacteria. Front. Microbiol. 9, 938 (2018).
Isshiki, R., Fujitani, H. & Tsuneda, S. Transcriptome analysis of the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1 reveals division of labor between aggregates and free-living cells. Microbes Environ. 35 (2), 1–9 (2020).
Schmidt, E. L. & Belser, L. W. Autotrophic nitrifying bacteria. In: Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties (eds. Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A.) 159–177. (Madison, WI, 1994).
Kempers, A. J. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma 12, 201–206 (1974).
Keeney, D. R. & Nelson, D. W. Nitrogen–inorganic forms. In: Methods of Soil Analysis: Part 2. Agronomy Monogr. no.9, 2nd ed. (ed. Page, A.L. et al.) 643–687 (Madison, WI, 1982).
Cataldo, D. A., Haroon, M., Schrader, L. E. & Youngs, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant. Anal. 6, 71–80 (1975).
Rottahauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712 (1997).
Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods. 50 (2), 189–203 (2002).
Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10 (5), 1357–1364 (2008).
Morimoto, S. et al. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types. Microbes Environ. 26 (3), 248–253 (2011).
Yang, W., Wang, Y., Tago, K., Tokuda, S. & Hayatsu, M. Comparison of the effects of phenylhydrazine hydrochloride and Dicyandiamide on ammonia-oxidizing bacteria and archaea in andosols. Front. Microbiol. 8, 2226 (2017).
Ammann, R. I., Krumhokz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Microbiol. 172 (2), 762–770 (1990).
Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46 (5), 2159–2168 (2018).
Mak, Q. X. C., Wick, R. R., Holt, J. M. & Wang, J. R. Polishing de Novo nanopore assemblies of bacteria and eukaryotes with FMLRC2. Mol. Biol. Evol. 40 (3), msad048 (2023).
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13 (6), e1005595 (2017).
Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22 (1), 266 (2021).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055 (2015).
Tanizawa, Y., Fujisawa, T. & Nakamura, Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinform 34 (6), 1037–1039 (2018).
Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7 (11), 000685 (2021).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinform 30 (9), 1236–1240 (2014).
Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38 (12), 5825–5829 (2021).
Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).
Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–D592 (2023).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).
Xu, L. et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).
Criscuolo, A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Research 9, 1309 (2020).
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30 (14), 3059–3066 (2002).
Kumar, S., Stecher, G., Li, M., Knyax, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for MacOS. Mol. Biol. Evol. 37, 1237–1239 (2020).
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints. 4, e1900v1 (2016).
Verhagen, F. J. M. & Laanbroek, H. J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy limited Chemostats. Appl. Environ. Microbiol. 57 (11), 3255–3263 (1991).
Bollman, A., French, E. & Laanbroek, H. J. Chapter three – Isolation, cultivation, and characterization of Ammonia-Oxidizing bacteria and archaea adapted to low ammonium concentrations. In: Methods in Enzymology, Research on Nitrification and Related Process, Part A (ed Klotz, M. G.) 55–88 (Amsterdam, 2011).
De Mendiburu, F. Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU). Electronic source: (2009). https://github.com/cran/agricolae (2023).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Electronic source: (2021). https://www.R-project.org/ (2023).
RStudio: Integrated Development for RStudio Team 2020, RStudio, R. & Boston, M. A. PBC, Electronic source: (2023). http://www.rstudio.com/
Stein, L. Y. et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Micriobiol. 9 (12), 2993–3007 (2007).