Ward, B. B. & Nitrification An introduction and overview of the state of the field. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 3–8. (Washington, DC, 2011).

Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528 (7583), 504–509 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75 (2), 139–157 (2005).

Article 

Google Scholar
 

Huang, X. et al. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil. Biol. Biochem. 119, 83–89 (2018).

Article 
CAS 

Google Scholar
 

Zhang, Q. et al. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soil. Soil. Biol. Biochem. 131, 229–237 (2019).

Article 
CAS 

Google Scholar
 

Yang, X. et al. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 717, 1–12 (2020).

Article 

Google Scholar
 

Lin, Y. et al. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Goderma 404, 1–7 (2021).


Google Scholar
 

Li, C., Hu, H. W., Chen, Q. L., Chen, D. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil. Biol. Biochem. 138, 107609 (2019).

Article 
CAS 

Google Scholar
 

Wang, J., Smith, P., Hergoualch, K. & Zou, J. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 185, 106501 (2022).

Article 
CAS 

Google Scholar
 

Ye, J. et al. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant. Sci. 13, 1055900 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tokuda, S. & Hayatsu, M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil. Sci. Plant. Nutr. 47 (3), 637–642 (2001).

Article 
CAS 

Google Scholar
 

Karak, T. et al. Major soil chemical properties of the major tea-growing areas in India. Pedosphere 25 (2), 316–328 (2015).

Article 
CAS 

Google Scholar
 

Akiyama, H., Yan, X. & Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in japan: summary of available data. Soil. Sci. Plant. Nutr. 52, 774–787 (2006).

Article 
CAS 

Google Scholar
 

Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11 (5), 1130–1141 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Takahashi, Y. et al. Enrichment of comammox and nitrite-oxidizing Nitrospira from acid soils. Front. Microbiol. 11, 1737 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tomiyama, H. et al. Characteristics of newly isolated nitrifying bacteria from rhizoplane of paddy rice. Microbes Environ. 16 (2), 101–108 (2001).

Article 

Google Scholar
 

Satoh, K., Itoh, C., Kang, D. J., Sumida, H. & Takahashi, R. Characteristics of newly isolated ammonia-oxidizing bacteria from acid sulfate soil and the rhizoplane of Leucaena grown in that soil. Soil. Sci. Plant. Nutr. 53, 23–31 (2010).

Article 

Google Scholar
 

Bhuiya, Z. H. & Walker, N. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42, 253–257 (1977).

Article 
CAS 
PubMed 

Google Scholar
 

Tago, K. et al. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil. Microbes Environ. 30 (1), 21–28 (2015).

Article 
PubMed 

Google Scholar
 

Aigle, A., Prosser, J. I. & Gubry-Rangin, C. The application of high-throughput sequencing technology to analysis of AmoA phylogeny and environmental niche specialization of terrestrial bacterial ammonia-oxidisers. Environ. Microbiol. 14 (3), 1–10 (2019).

CAS 

Google Scholar
 

Norton, J. M. et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74 (11), 559–572 (2008).

Article 

Google Scholar
 

Rice, M. C. et al. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand. Genomic Sci. 11 (46), 1–8 (2016).

MathSciNet 

Google Scholar
 

Jiang, Q. Q. & Bakken, L. R. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol. Ecol. 30, 171–186 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: A potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7 (12), 699 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. & Stahl, D. A. Phylogenetic probes for analyzing abundance and Spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62 (6), 2156–2162 (1996).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Klotz, M. G. & Stein, L. Y. Genomics of ammonia-oxidizing bacteria and insights into their evolution. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 57–94. (Washington, DC, 2011).

Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Koper, T. E., El-Sheikh, A. F., Norton, J. M. & Klotz, M. G. Urease-encoding genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 70 (4), 2342–2348 (2004).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Tokuda, S. & Hayatsu, M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil. Sci. Plant. Nutr. 50 (3), 365–374 (2004).

Article 

Google Scholar
 

Hirono, Y. & Nonaka, K. Nitrous oxide emissions from green tea fields in japan: contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil. Sci. Plant. Nutr. 58, 384–392 (2012).

Article 
CAS 

Google Scholar
 

Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialization and differentiation. Trends Microbiol. 20 (11), 523–531 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, L. M., Hu, H. W., Shen, J. P. & He, J. Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Li, Y., Chapman, S. J., Nicol, G. W. & Yao, H. Nitrification and nitrifiers in acidic soils. Soil. Biol. Biochem. 116, 290–301 (2018).

Article 
CAS 

Google Scholar
 

French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G. & Bollmann, A. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78 (16), 5773–5780 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ying, J. et al. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil. Biol. Biochem. 107, 10–18 (2017).

Article 
CAS 

Google Scholar
 

Fan, D., Fan, K., Yu, C., Lu, Y. & Wang Xiao-chang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Biomed. Biotechnol. 18 (2), 99–108 (2017).

CAS 

Google Scholar
 

Tang, S. et al. The Inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Sci. Total Environ. 778, 146328 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Onodera, Y., Nakagawa, T., Takahashi, R. & Tokuyama, T. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ. 25 (1), 28–35 (2010).

Article 
PubMed 

Google Scholar
 

Zhu, G. et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 5, 1905–1912 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tao, J. et al. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese loess plateau and their responses to nitrogen inputs. Sci. Total Environ. 635, 240–248 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Banning, N., Maccarone, L., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Du, J. et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats. Front. Environ. Sci. 10, 976618 (2022).

Article 

Google Scholar
 

Li, X. et al. Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Appl. Soil. Ecol. 157, 103729 (2021).

Article 

Google Scholar
 

De Boer, W., Gunnewiek, P. J. A. K. & Laanbroek, H. J. Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil. Biol. Biochem. 27 (2), 127–132 (1995).

Article 

Google Scholar
 

Walker, N. & Wickramasinghe, K. N. Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil. Biol. Biochem. 11, 231–236 (1979).

Article 
CAS 

Google Scholar
 

Jumadi, O. et al. Community structure of ammonia oxidizing bacteria and their potential to produce nitrous oxide and carbon dioxide in acid tea soils. Geomicrobiol. J. 25, 381–389 (2008).

Article 
CAS 

Google Scholar
 

Yao, H. et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soil. Appl. Environ. Microbiol. 77 (13), 4618–4625 (2011).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Okamura, K., Takanashi, A., Yamada, T. & Hiraishi, A. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil. J. Phys: Conf. Ser. 352, 012052 (2012).


Google Scholar
 

Wang, X. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil. Biol. Biochem. 84, 28–37 (2015).

Article 
CAS 

Google Scholar
 

Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031–e01018 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lourenço, K. S. et al. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front. Microbiol. 9, 1–11 (2018).

Article 

Google Scholar
 

Pommering-Röser, A. & Koops, H. P. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol. Res. 160, 27–35 (2005).

Article 

Google Scholar
 

Norton, J. M. Diversity and Environmental Distribution of Ammonia-Oxidizing Bacteria. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 39–55. (Washington, DC, 2011).

Allison, S. M. & Prosser, J. I. Urease activity in neutrophilic autotrophic ammonia -oxidizing bacteria isolated from acid soils. Soil. Biol. Biochem. 23 (1), 45–51 (1991).

Article 
CAS 

Google Scholar
 

Thandar, S. M., Ushiki, N., Fujitani, H., Tsuneda, Y. & Sekiguchi & Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1 isolated from autotrophic nitrifying granules of wastewater treatment bioreactor. Front. Microbiol. 7 (1869), 1–14 (2016).


Google Scholar
 

Belser, L. W. & Schmidt, E. L. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett. 7, 213–216 (1980).

Article 
CAS 

Google Scholar
 

Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil. Sci. Plant. Nutr. 39, 219–226 (1993).

Article 
CAS 

Google Scholar
 

Allison, S. M. & Prosser, J. I. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil. Biol. Biochem. 125 (7), 935–941 (1993).

Article 

Google Scholar
 

De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E. & Laanbroek, H. J. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57 (12), 3600–3604 (1991).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Suzuki, I., Dular, U. & Kwok, S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas Europaea cells and extracts. J. Bacteriol. 120 (1), 556–558 (1974).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koper, T. E., Stark, J. M., Habteselassie, M. Y. & Norton, J. M. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol. Ecol. 74 (2), 316–322 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Jung, M. Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berube, P. M. & Stahl, D. A. The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas Europaea. J. Bacteriol. 194 (13), 3448–3456 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stein, L. Y. Heterotrophic Nitrification and Nitrifier Denitrification. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 95–114. (Washington, DC, 2011).

Sedlacek, C. J. et al. Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth. mSystems 5 (1), e00562-19 (2020).

Cantaro, J. D., Vilbert, A. C. & Lancaster, K. M. Nitrosomonas Europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA. 113 (52), 14704–14709 (2016).

ADS 

Google Scholar
 

Elmore, B. O., Bergmann, D. J., Klotz, M. G. & Hooper, A. B. Cytochromes P460 and c’-beta; a new family of high-spin cytochromes c. FEBS Lett. 581 (5), 911–916 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Shaw, L. J. et al. Nitrosospira spp. Can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8 (2), 214–222 (2005).

Article 

Google Scholar
 

IFA. Fertilizer use by crop and country for the 2017–2018 period. International Fertilizer Association (IFA) 2022, Paris, France. Electronic source: (2023). https://www.ifastat.org/consumption/fertilizer-use-by-crop

De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil. Biol. Biochem. 33, 853–866 (2001).

Article 

Google Scholar
 

Zorz, J. K., Kozlowski, J. A., Stein, L. Y., Strous, M. & Kleiner, M. Comparative proteomics of three species of ammonia-oxidizing bacteria. Front. Microbiol. 9, 938 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Isshiki, R., Fujitani, H. & Tsuneda, S. Transcriptome analysis of the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1 reveals division of labor between aggregates and free-living cells. Microbes Environ. 35 (2), 1–9 (2020).

Article 

Google Scholar
 

Schmidt, E. L. & Belser, L. W. Autotrophic nitrifying bacteria. In: Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties (eds. Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A.) 159–177. (Madison, WI, 1994).

Kempers, A. J. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma 12, 201–206 (1974).

Article 
ADS 
CAS 

Google Scholar
 

Keeney, D. R. & Nelson, D. W. Nitrogen–inorganic forms. In: Methods of Soil Analysis: Part 2. Agronomy Monogr. no.9, 2nd ed. (ed. Page, A.L. et al.) 643–687 (Madison, WI, 1982).

Cataldo, D. A., Haroon, M., Schrader, L. E. & Youngs, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant. Anal. 6, 71–80 (1975).

Article 
CAS 

Google Scholar
 

Rottahauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712 (1997).

Article 
ADS 

Google Scholar
 

Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods. 50 (2), 189–203 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10 (5), 1357–1364 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Morimoto, S. et al. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types. Microbes Environ. 26 (3), 248–253 (2011).

Article 
PubMed 

Google Scholar
 

Yang, W., Wang, Y., Tago, K., Tokuda, S. & Hayatsu, M. Comparison of the effects of phenylhydrazine hydrochloride and Dicyandiamide on ammonia-oxidizing bacteria and archaea in andosols. Front. Microbiol. 8, 2226 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ammann, R. I., Krumhokz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Microbiol. 172 (2), 762–770 (1990).


Google Scholar
 

Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46 (5), 2159–2168 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mak, Q. X. C., Wick, R. R., Holt, J. M. & Wang, J. R. Polishing de Novo nanopore assemblies of bacteria and eukaryotes with FMLRC2. Mol. Biol. Evol. 40 (3), msad048 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13 (6), e1005595 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22 (1), 266 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tanizawa, Y., Fujisawa, T. & Nakamura, Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinform 34 (6), 1037–1039 (2018).

Article 
CAS 

Google Scholar
 

Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7 (11), 000685 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinform 30 (9), 1236–1240 (2014).

Article 
CAS 

Google Scholar
 

Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38 (12), 5825–5829 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–D592 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, L. et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Criscuolo, A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Research 9, 1309 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30 (14), 3059–3066 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumar, S., Stecher, G., Li, M., Knyax, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for MacOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

CAS 
PubMed 

Google Scholar
 

Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints. 4, e1900v1 (2016).

Verhagen, F. J. M. & Laanbroek, H. J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy limited Chemostats. Appl. Environ. Microbiol. 57 (11), 3255–3263 (1991).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bollman, A., French, E. & Laanbroek, H. J. Chapter three – Isolation, cultivation, and characterization of Ammonia-Oxidizing bacteria and archaea adapted to low ammonium concentrations. In: Methods in Enzymology, Research on Nitrification and Related Process, Part A (ed Klotz, M. G.) 55–88 (Amsterdam, 2011).

De Mendiburu, F. Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU). Electronic source: (2009). https://github.com/cran/agricolae (2023).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Electronic source: (2021). https://www.R-project.org/ (2023).

RStudio: Integrated Development for RStudio Team 2020, RStudio, R. & Boston, M. A. PBC, Electronic source: (2023). http://www.rstudio.com/

Stein, L. Y. et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Micriobiol. 9 (12), 2993–3007 (2007).

Article 
CAS 

Google Scholar