Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Pirrone, N. et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010).
Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).
Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).
Selin, N. E. et al. Global 3‐D land–ocean–atmosphere model for mercury: present‐day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 22, GB2011 (2008).
Amos, H. M., Jacob, D. J., Streets, D. G. & Sunderland, E. M. Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27, 410–421 (2013).
Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014).
Sonke, J. E. et al. Global change effects on biogeochemical mercury cycling. Ambio 52, 853–876 (2023).
Mason, R. P., Fitzgerald, W. F. & Morel, F. M. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 58, 3191–3198 (1994).
Mason, R. P. & Sheu, G. R. Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles 16, 40-1–40-14 (2002).
Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J. & Torgersen, T. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 66, 1105–1118 (2002).
Semeniuk, K. & Dastoor, A. Development of a global ocean mercury model with a methylation cycle: outstanding issues. Glob. Biogeochem. Cycles 31, 400–433 (2017).
Kawai, T., Sakurai, T. & Suzuki, N. Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environ. Modell. Softw. 124, 104599 (2020).
Global Mercury Assessment 2018 (UNEP, 2019).
Cossa, D. et al. (eds) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances 229–247 (Springer, 1996).
Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 21, GB4022 (2007).
Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854–864 (2015).
Outridge, P. M., Mason, R., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).
Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).
Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).
Chen, L. et al. Mass budget of mercury (Hg) in the seawater of Eastern China Marginal Seas: importance of the sediment–water transport processes. Environ. Sci. Technol. 56, 11418–11428 (2022).
Hammerschmidt, C. R. & Fitzgerald, W. F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38, 1487–1495 (2004).
Liu, B. et al. Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments. J. Geophys. Res. Biogeosci. 114, G00C07 (2009).
Seelen, E. A., Massey, G. M. & Mason, R. P. Role of sediment resuspension on estuarine suspended particulate mercury dynamics. Environ. Sci. Technol. 52, 7736–7744 (2018).
Cossa, D., Dang, D. H. & Thomas, B. Mercury mobility in epibenthic waters of a deltaic environment. J. Geophys. Res. Biogeosci. 129, e2023JG007575 (2024).
Amos, H. M. et al. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 48, 9514–9522 (2014).
Ribbe, J. & Holloway, P. E. A model of suspended sediment transport by internal tides. Cont. Shelf Res. 21, 395–422 (2001).
Sunderland, E. M. et al. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ. Sci. Technol. 44, 1698–1704 (2010).
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).
Liu, M. et al. Observation-based mercury export from rivers to coastal oceans in East Asia. Environ. Sci. Technol. 55, 14269–14280 (2021).
Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).
Liem-Nguyen, V. et al. Spatial patterns and distributional controls of total and methylated mercury off the Lena River in the Laptev Sea sediments. Mar. Chem. 238, 104052 (2022).
Tesán Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795–801 (2020).
Kohler, S. G. et al. Distribution pattern of mercury in northern Barents Sea and Eurasian Basin surface sediment. Mar. Pollut. Bull. 185, 114272 (2022).
Bianchi, T. S. et al. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 17, 287–297 (2024).
Kocman, D. et al. Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int. J. Environ. Res. Public Health 14, 138 (2017).
Qiu, X. et al. Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South. Nat. Commun. 16, 1179 (2025).
Zhang, Y., Jaeglé, L., Thompson, L. & Streets, D. G. Six centuries of changing oceanic mercury. Glob. Biogeochem. Cycles 28, 1251–1261 (2014).
Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).
Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).
Sun, X. et al. Mercury burial in modern sedimentary systems of the East China Marginal Seas: the role of coastal oceans in global mercury cycling. Glob. Biogeochem. Cycles 37, e2023GB007760 (2023).
Outridge, P., Macdonald, R., Wang, F., Stern, G. & Dastoor, A. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).
Dastoor, A. et al. Arctic mercury cycling. Nat. Rev. Earth Environ. 3, 270–286 (2022).
Rosati, G. et al. Mercury in the Black Sea: new insights from measurements and numerical modeling. Glob. Biogeochem. Cycles 32, 529–550 (2018).
Liu, M. et al. Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance. Environ. Sci. Technol. 50, 6224–6232 (2016).
Hare, A. A. et al. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ. Sci. Technol. 44, 5805–5811 (2010).
Žagar, D. et al. Mercury in the Mediterranean. Part 2: processes and mass balance. Environ. Sci. Pollut. Res. 21, 4081–4094 (2014).
Cossa, D. et al. Mediterranean Mercury Assessment 2022: an updated budget, health consequences, and research perspectives. Environ. Sci. Technol. 56, 3840–3862 (2022).
Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).
Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R. & Roberts, C. M. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob. Change Biol. 28, 2875–2894 (2022).
Restreppo, G. A., Wood, W. T. & Phrampus, B. J. Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Mar. Lett. 40, 755–763 (2020).
Kim, E.-H., Mason, R. P. & Bergeron, C. M. A modeling study on methylmercury bioaccumulation and its controlling factors. Ecol. Model. 218, 267–289 (2008).
Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).
Churchill, J. H. The effect of commercial trawling on sediment resuspension and transport over the Middle Atlantic Bight continental shelf. Cont. Shelf Res. 9, 841–865 (1989).
Swift, D. J. in The Geology of Continental Margins (eds Burk, C. A. & Drake, C. L.) 117–135 (Springer, 1974).
Collie, J. S., Hall, S. J., Kaiser, M. J. & Poiner, I. R. A quantitative analysis of fishing impacts on shelf‐sea benthos. J. Anim. Ecol. 69, 785–798 (2000).
García-Ordiales, E. et al. Mercury and arsenic mobility in resuspended contaminated estuarine sediments (Asturias, Spain): a laboratory-based study. Sci. Total Environ. 744, 140870 (2020).
Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).
Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).
Schartup, A. T. et al. Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proc. Natl Acad. Sci. USA 112, 11789–11794 (2015).
Wu, P. et al. Atmospheric monomethylmercury: inferred sources constrained by observations and implications for human exposure. Environ. Int. 193, 109127 (2024).
Guo, W. et al. Warming-induced vegetation greening may aggravate soil mercury levels worldwide. Environ. Sci. Technol. 58, 15078–15089 (2024).
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).
Liu, M. et al. Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proc. Natl Acad. Sci. USA 118, e2102629118 (2021).
Pauly, D. & Zeller, D. (eds) Catch reconstruction: concepts, methods and data sources. SeaAroundUs https://www.seaaroundus.org/catch-reconstruction-and-allocation-methods/ (2015).
Pacyna, J. M. et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16, 12495–12511 (2016).
De Simone, F. et al. The GOS4M Knowledge Hub: a web-based effectiveness evaluation platform in support of the Minamata Convention on Mercury. Environ. Sci. Policy 124, 235–246 (2021).
Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elem. Sci. Anthr. 9, 00180 (2021).
Jönsson, A., Gustafsson, Ö., Axelman, J. & Sundberg, H. Global accounting of PCBs in the continental shelf sediments. Environ. Sci. Technol. 37, 245–255 (2003).
Covelli, S., Faganeli, J., Horvat, M. & Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl. Geochem. 16, 541–558 (2001).
Wang, S. et al. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Appl. Geochem. 24, 1702–1711 (2009).
Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S. & Di Leo, A. Mercury and methylmercury concentrations in Mediterranean seafood and surface sediments, intake evaluation and risk for consumers. Int. J. Hyg. Environ. Health 215, 418–426 (2012).
Heimbürger, L.-E. et al. Natural and anthropogenic trace metals in sediments of the Ligurian Sea (northwestern Mediterranean). Chem. Geol. 291, 141–151 (2012).
Kim, H. et al. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. Sci. Total Environ. 654, 801–810 (2019).
Song, S. et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nat. Commun. 13, 4903 (2022).
Zhou, C. et al. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment. Nat. Commun. 16, 1831 (2025).
Zaferani, S., Pérez-Rodríguez, M. & Biester, H. Diatom ooze—a large marine mercury sink. Science 361, 797–800 (2018).
Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).
Lee, T. R., Wood, W. T. & Phrampus, B. J. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Glob. Biogeochem. Cycles 33, 37–46 (2019).
Graw, J., Wood, W. & Phrampus, B. Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. -Solid Earth 126, e2020JB020135 (2021).
Martin, K. M., Wood, W. T. & Becker, J. J. A global prediction of seafloor sediment porosity using machine learning. Geophys. Res. Lett. 42, 10640–10646 (2015).
Dutkiewicz, A., Müller, R. D., O’Callaghan, S. & Jónasson, H. Census of seafloor sediments in the world’s ocean. Geology 43, 795–798 (2015).
Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).
Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).
Bates, D., Maechler, M., Bolker, B. & Walkeret, S. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-37 https://doi.org/10.32614/CRAN.package.lme4 (2025).
Bartoń, K. MuMIn: Multi-model inference. R package version 1.48.11 https://doi.org/10.32614/CRAN.package.MuMIn (2025).
Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. & Jensen, S. P. lmerTest: Tests in linear mixed effects models. R package version 3.1-3 https://doi.org/10.32614/CRAN.package.lmerTest (2020).
Servén, D., Brummitt, C. & Abedi, H. dswah/pyGAM: v0.10.1. Zenodo https://doi.org/10.5281/zenodo.1208723 (2025).
Médieu, A. et al. Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proc. Natl Acad. Sci. USA 119, e2113032119 (2022).
McKinney, W. Data structures for statistical computing in Python. scipy 445, 51–56 (2010).
Zeileis, A. et al. strucchange: testing, monitoring, and dating structural changes. R package version 1.5-4 https://doi.org/10.32614/CRAN.package.strucchange (2024).
Pohlert, T. trend: non-parametric trend tests and change-point detection. R package version 1.1.6 https://doi.org/10.32614/CRAN.package.trend (2023).
Liu, M. et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment. Nat. Geosci. 17, 896–904 (2024).
scikit-learn developers. scikit-learn. Zenodo https://doi.org/10.5281/zenodo.14627164 (2025).
Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Proc. Syst. 30, 4768–4777 (2017).
Sundararajan, M. & Najmi, A. The many Shapley values for model explanation. In International Conference on Machine Learning (eds Daumé, H. & Singh, A.) 9269–9278 (PMLR, 2020).
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).
Shi, X., Annett, A. L., Jones, R. L., Middag, R. & Mason, R. P. Benthic deposition and burial of total mercury and methylmercury estimated using thorium isotopes in the high-latitude North Atlantic. Geochim. Cosmochim. Acta. 399, 191–204 (2025).
Clarke, S. & Elliott, A. Modelling suspended sediment concentrations in the Firth of Forth. Estuar. Coast. Shelf Sci. 47, 235–250 (1998).
Kalnejais, L. H., Martin, W. R., Signell, R. P. & Bothner, M. H. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ. Sci. Technol. 41, 2282–2288 (2007).
Ravens, T. M. & Gschwend, P. M. Flume measurements of sediment erodibility in Boston Harbor. J. Hydraul. Eng. 125, 998–1005 (1999).
Jing, L. & Ridd, P. V. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coast. Eng. 29, 169–186 (1996).
Bloesch, J. A review of methods used to measure sediment resuspension. Hydrobiologia 284, 13–18 (1994).
Wiberg, P. L., Drake, D. E. & Cacchione, D. A. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions. Cont. Shelf Res. 14, 1191–1219 (1994).
Harris, C. K. & Wiberg, P. Across‐shelf sediment transport: interactions between suspended sediment and bed sediment. J. Geophys. Res. Oceans 107, 8-1–8-12 (2002).
Dias, J., Gonzalez, R., Garcia, C. & Diaz-del-Rio, V. Sediment distribution patterns on the Galicia-Minho continental shelf. Prog. Oceanogr. 52, 215–231 (2002).
Griffin, J. D., Hemer, M. A. & Jones, B. G. Mobility of sediment grain size distributions on a wave dominated continental shelf, southeastern Australia. Mar. Geol. 252, 13–23 (2008).
Gill, G. A. et al. Sediment−water fluxes of mercury in Lavaca Bay, Texas. Environ. Sci. Technol. 33, 663–669 (1999).
Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560–575 (2016).
Boudreau, B. P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142 (1996).
Hollweg, T., Gilmour, C. C. & Mason, R. Mercury and methylmercury cycling in sediments of the mid‐Atlantic continental shelf and slope. Limnol. Oceanogr. 55, 2703–2722 (2010).
Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).
De Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).
Liu, M. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).
Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Modell. Softw. 25, 837–853 (2010).