Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

Article 
CAS 

Google Scholar
 

Pirrone, N. et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010).

Article 
CAS 

Google Scholar
 

Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

Article 
CAS 

Google Scholar
 

Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).

Article 
CAS 

Google Scholar
 

Selin, N. E. et al. Global 3‐D land–ocean–atmosphere model for mercury: present‐day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 22, GB2011 (2008).


Google Scholar
 

Amos, H. M., Jacob, D. J., Streets, D. G. & Sunderland, E. M. Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27, 410–421 (2013).

Article 
CAS 

Google Scholar
 

Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014).

Article 
CAS 

Google Scholar
 

Sonke, J. E. et al. Global change effects on biogeochemical mercury cycling. Ambio 52, 853–876 (2023).

Article 
CAS 

Google Scholar
 

Mason, R. P., Fitzgerald, W. F. & Morel, F. M. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 58, 3191–3198 (1994).

Article 
CAS 

Google Scholar
 

Mason, R. P. & Sheu, G. R. Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles 16, 40-1–40-14 (2002).

Article 

Google Scholar
 

Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J. & Torgersen, T. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 66, 1105–1118 (2002).

Article 
CAS 

Google Scholar
 

Semeniuk, K. & Dastoor, A. Development of a global ocean mercury model with a methylation cycle: outstanding issues. Glob. Biogeochem. Cycles 31, 400–433 (2017).

Article 
CAS 

Google Scholar
 

Kawai, T., Sakurai, T. & Suzuki, N. Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environ. Modell. Softw. 124, 104599 (2020).

Article 

Google Scholar
 

Global Mercury Assessment 2018 (UNEP, 2019).

Cossa, D. et al. (eds) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances 229–247 (Springer, 1996).

Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 21, GB4022 (2007).

Article 

Google Scholar
 

Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854–864 (2015).

Article 
CAS 

Google Scholar
 

Outridge, P. M., Mason, R., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).

CAS 

Google Scholar
 

Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

Article 
CAS 

Google Scholar
 

Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).

Article 

Google Scholar
 

Chen, L. et al. Mass budget of mercury (Hg) in the seawater of Eastern China Marginal Seas: importance of the sediment–water transport processes. Environ. Sci. Technol. 56, 11418–11428 (2022).

Article 
CAS 

Google Scholar
 

Hammerschmidt, C. R. & Fitzgerald, W. F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38, 1487–1495 (2004).

Article 
CAS 

Google Scholar
 

Liu, B. et al. Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments. J. Geophys. Res. Biogeosci. 114, G00C07 (2009).

Article 

Google Scholar
 

Seelen, E. A., Massey, G. M. & Mason, R. P. Role of sediment resuspension on estuarine suspended particulate mercury dynamics. Environ. Sci. Technol. 52, 7736–7744 (2018).

Article 
CAS 

Google Scholar
 

Cossa, D., Dang, D. H. & Thomas, B. Mercury mobility in epibenthic waters of a deltaic environment. J. Geophys. Res. Biogeosci. 129, e2023JG007575 (2024).

Article 
CAS 

Google Scholar
 

Amos, H. M. et al. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 48, 9514–9522 (2014).

Article 
CAS 

Google Scholar
 

Ribbe, J. & Holloway, P. E. A model of suspended sediment transport by internal tides. Cont. Shelf Res. 21, 395–422 (2001).

Article 

Google Scholar
 

Sunderland, E. M. et al. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ. Sci. Technol. 44, 1698–1704 (2010).

Article 
CAS 

Google Scholar
 

Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

Article 
CAS 

Google Scholar
 

Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).

Article 
CAS 

Google Scholar
 

Liu, M. et al. Observation-based mercury export from rivers to coastal oceans in East Asia. Environ. Sci. Technol. 55, 14269–14280 (2021).

Article 
CAS 

Google Scholar
 

Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).

Article 
CAS 

Google Scholar
 

Liem-Nguyen, V. et al. Spatial patterns and distributional controls of total and methylated mercury off the Lena River in the Laptev Sea sediments. Mar. Chem. 238, 104052 (2022).

Article 
CAS 

Google Scholar
 

Tesán Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795–801 (2020).

Article 

Google Scholar
 

Kohler, S. G. et al. Distribution pattern of mercury in northern Barents Sea and Eurasian Basin surface sediment. Mar. Pollut. Bull. 185, 114272 (2022).

Article 
CAS 

Google Scholar
 

Bianchi, T. S. et al. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 17, 287–297 (2024).

Article 
CAS 

Google Scholar
 

Kocman, D. et al. Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int. J. Environ. Res. Public Health 14, 138 (2017).

Article 

Google Scholar
 

Qiu, X. et al. Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South. Nat. Commun. 16, 1179 (2025).

Article 
CAS 

Google Scholar
 

Zhang, Y., Jaeglé, L., Thompson, L. & Streets, D. G. Six centuries of changing oceanic mercury. Glob. Biogeochem. Cycles 28, 1251–1261 (2014).

Article 
CAS 

Google Scholar
 

Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).

Article 
CAS 

Google Scholar
 

Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).

Article 
CAS 

Google Scholar
 

Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

Article 
CAS 

Google Scholar
 

Sun, X. et al. Mercury burial in modern sedimentary systems of the East China Marginal Seas: the role of coastal oceans in global mercury cycling. Glob. Biogeochem. Cycles 37, e2023GB007760 (2023).

Article 
CAS 

Google Scholar
 

Outridge, P., Macdonald, R., Wang, F., Stern, G. & Dastoor, A. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).

Article 
CAS 

Google Scholar
 

Dastoor, A. et al. Arctic mercury cycling. Nat. Rev. Earth Environ. 3, 270–286 (2022).

Article 
CAS 

Google Scholar
 

Rosati, G. et al. Mercury in the Black Sea: new insights from measurements and numerical modeling. Glob. Biogeochem. Cycles 32, 529–550 (2018).

Article 
CAS 

Google Scholar
 

Liu, M. et al. Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance. Environ. Sci. Technol. 50, 6224–6232 (2016).

Article 
CAS 

Google Scholar
 

Hare, A. A. et al. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ. Sci. Technol. 44, 5805–5811 (2010).

Article 
CAS 

Google Scholar
 

Žagar, D. et al. Mercury in the Mediterranean. Part 2: processes and mass balance. Environ. Sci. Pollut. Res. 21, 4081–4094 (2014).

Article 

Google Scholar
 

Cossa, D. et al. Mediterranean Mercury Assessment 2022: an updated budget, health consequences, and research perspectives. Environ. Sci. Technol. 56, 3840–3862 (2022).

Article 
CAS 

Google Scholar
 

Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

Article 
CAS 

Google Scholar
 

Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R. & Roberts, C. M. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob. Change Biol. 28, 2875–2894 (2022).

Article 
CAS 

Google Scholar
 

Restreppo, G. A., Wood, W. T. & Phrampus, B. J. Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Mar. Lett. 40, 755–763 (2020).

Article 

Google Scholar
 

Kim, E.-H., Mason, R. P. & Bergeron, C. M. A modeling study on methylmercury bioaccumulation and its controlling factors. Ecol. Model. 218, 267–289 (2008).

Article 
CAS 

Google Scholar
 

Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).

Article 

Google Scholar
 

Churchill, J. H. The effect of commercial trawling on sediment resuspension and transport over the Middle Atlantic Bight continental shelf. Cont. Shelf Res. 9, 841–865 (1989).

Article 

Google Scholar
 

Swift, D. J. in The Geology of Continental Margins (eds Burk, C. A. & Drake, C. L.) 117–135 (Springer, 1974).

Collie, J. S., Hall, S. J., Kaiser, M. J. & Poiner, I. R. A quantitative analysis of fishing impacts on shelf‐sea benthos. J. Anim. Ecol. 69, 785–798 (2000).

Article 

Google Scholar
 

García-Ordiales, E. et al. Mercury and arsenic mobility in resuspended contaminated estuarine sediments (Asturias, Spain): a laboratory-based study. Sci. Total Environ. 744, 140870 (2020).

Article 

Google Scholar
 

Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).

Article 
CAS 

Google Scholar
 

Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).

Article 
CAS 

Google Scholar
 

Schartup, A. T. et al. Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proc. Natl Acad. Sci. USA 112, 11789–11794 (2015).

Article 
CAS 

Google Scholar
 

Wu, P. et al. Atmospheric monomethylmercury: inferred sources constrained by observations and implications for human exposure. Environ. Int. 193, 109127 (2024).

Article 
CAS 

Google Scholar
 

Guo, W. et al. Warming-induced vegetation greening may aggravate soil mercury levels worldwide. Environ. Sci. Technol. 58, 15078–15089 (2024).

Article 
CAS 

Google Scholar
 

Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).

Article 

Google Scholar
 

Liu, M. et al. Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proc. Natl Acad. Sci. USA 118, e2102629118 (2021).

Article 
CAS 

Google Scholar
 

Pauly, D. & Zeller, D. (eds) Catch reconstruction: concepts, methods and data sources. SeaAroundUs https://www.seaaroundus.org/catch-reconstruction-and-allocation-methods/ (2015).

Pacyna, J. M. et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16, 12495–12511 (2016).

Article 
CAS 

Google Scholar
 

De Simone, F. et al. The GOS4M Knowledge Hub: a web-based effectiveness evaluation platform in support of the Minamata Convention on Mercury. Environ. Sci. Policy 124, 235–246 (2021).

Article 

Google Scholar
 

Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elem. Sci. Anthr. 9, 00180 (2021).

Article 

Google Scholar
 

Jönsson, A., Gustafsson, Ö., Axelman, J. & Sundberg, H. Global accounting of PCBs in the continental shelf sediments. Environ. Sci. Technol. 37, 245–255 (2003).

Article 

Google Scholar
 

Covelli, S., Faganeli, J., Horvat, M. & Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl. Geochem. 16, 541–558 (2001).

Article 
CAS 

Google Scholar
 

Wang, S. et al. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Appl. Geochem. 24, 1702–1711 (2009).

Article 
CAS 

Google Scholar
 

Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S. & Di Leo, A. Mercury and methylmercury concentrations in Mediterranean seafood and surface sediments, intake evaluation and risk for consumers. Int. J. Hyg. Environ. Health 215, 418–426 (2012).

Article 
CAS 

Google Scholar
 

Heimbürger, L.-E. et al. Natural and anthropogenic trace metals in sediments of the Ligurian Sea (northwestern Mediterranean). Chem. Geol. 291, 141–151 (2012).

Article 

Google Scholar
 

Kim, H. et al. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. Sci. Total Environ. 654, 801–810 (2019).

Article 
CAS 

Google Scholar
 

Song, S. et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nat. Commun. 13, 4903 (2022).

Article 
CAS 

Google Scholar
 

Zhou, C. et al. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment. Nat. Commun. 16, 1831 (2025).

Article 
CAS 

Google Scholar
 

Zaferani, S., Pérez-Rodríguez, M. & Biester, H. Diatom ooze—a large marine mercury sink. Science 361, 797–800 (2018).

Article 
CAS 

Google Scholar
 

Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).

Article 

Google Scholar
 

Lee, T. R., Wood, W. T. & Phrampus, B. J. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Glob. Biogeochem. Cycles 33, 37–46 (2019).

Article 
CAS 

Google Scholar
 

Graw, J., Wood, W. & Phrampus, B. Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. -Solid Earth 126, e2020JB020135 (2021).

Article 

Google Scholar
 

Martin, K. M., Wood, W. T. & Becker, J. J. A global prediction of seafloor sediment porosity using machine learning. Geophys. Res. Lett. 42, 10640–10646 (2015).

Article 

Google Scholar
 

Dutkiewicz, A., Müller, R. D., O’Callaghan, S. & Jónasson, H. Census of seafloor sediments in the world’s ocean. Geology 43, 795–798 (2015).

Article 
CAS 

Google Scholar
 

Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).

Article 

Google Scholar
 

Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

Article 

Google Scholar
 

Bates, D., Maechler, M., Bolker, B. & Walkeret, S. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-37 https://doi.org/10.32614/CRAN.package.lme4 (2025).

Bartoń, K. MuMIn: Multi-model inference. R package version 1.48.11 https://doi.org/10.32614/CRAN.package.MuMIn (2025).

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. & Jensen, S. P. lmerTest: Tests in linear mixed effects models. R package version 3.1-3 https://doi.org/10.32614/CRAN.package.lmerTest (2020).

Servén, D., Brummitt, C. & Abedi, H. dswah/pyGAM: v0.10.1. Zenodo https://doi.org/10.5281/zenodo.1208723 (2025).

Médieu, A. et al. Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proc. Natl Acad. Sci. USA 119, e2113032119 (2022).

Article 

Google Scholar
 

McKinney, W. Data structures for statistical computing in Python. scipy 445, 51–56 (2010).


Google Scholar
 

Zeileis, A. et al. strucchange: testing, monitoring, and dating structural changes. R package version 1.5-4 https://doi.org/10.32614/CRAN.package.strucchange (2024).

Pohlert, T. trend: non-parametric trend tests and change-point detection. R package version 1.1.6 https://doi.org/10.32614/CRAN.package.trend (2023).

Liu, M. et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment. Nat. Geosci. 17, 896–904 (2024).

Article 
CAS 

Google Scholar
 

scikit-learn developers. scikit-learn. Zenodo https://doi.org/10.5281/zenodo.14627164 (2025).

Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Proc. Syst. 30, 4768–4777 (2017).


Google Scholar
 

Sundararajan, M. & Najmi, A. The many Shapley values for model explanation. In International Conference on Machine Learning (eds Daumé, H. & Singh, A.) 9269–9278 (PMLR, 2020).

Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

Article 
CAS 

Google Scholar
 

Shi, X., Annett, A. L., Jones, R. L., Middag, R. & Mason, R. P. Benthic deposition and burial of total mercury and methylmercury estimated using thorium isotopes in the high-latitude North Atlantic. Geochim. Cosmochim. Acta. 399, 191–204 (2025).

Article 
CAS 

Google Scholar
 

Clarke, S. & Elliott, A. Modelling suspended sediment concentrations in the Firth of Forth. Estuar. Coast. Shelf Sci. 47, 235–250 (1998).

Article 

Google Scholar
 

Kalnejais, L. H., Martin, W. R., Signell, R. P. & Bothner, M. H. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ. Sci. Technol. 41, 2282–2288 (2007).

Article 
CAS 

Google Scholar
 

Ravens, T. M. & Gschwend, P. M. Flume measurements of sediment erodibility in Boston Harbor. J. Hydraul. Eng. 125, 998–1005 (1999).

Article 

Google Scholar
 

Jing, L. & Ridd, P. V. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coast. Eng. 29, 169–186 (1996).

Article 

Google Scholar
 

Bloesch, J. A review of methods used to measure sediment resuspension. Hydrobiologia 284, 13–18 (1994).

Article 

Google Scholar
 

Wiberg, P. L., Drake, D. E. & Cacchione, D. A. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions. Cont. Shelf Res. 14, 1191–1219 (1994).

Article 

Google Scholar
 

Harris, C. K. & Wiberg, P. Across‐shelf sediment transport: interactions between suspended sediment and bed sediment. J. Geophys. Res. Oceans 107, 8-1–8-12 (2002).

Article 

Google Scholar
 

Dias, J., Gonzalez, R., Garcia, C. & Diaz-del-Rio, V. Sediment distribution patterns on the Galicia-Minho continental shelf. Prog. Oceanogr. 52, 215–231 (2002).

Article 

Google Scholar
 

Griffin, J. D., Hemer, M. A. & Jones, B. G. Mobility of sediment grain size distributions on a wave dominated continental shelf, southeastern Australia. Mar. Geol. 252, 13–23 (2008).

Article 

Google Scholar
 

Gill, G. A. et al. Sediment−water fluxes of mercury in Lavaca Bay, Texas. Environ. Sci. Technol. 33, 663–669 (1999).

Article 
CAS 

Google Scholar
 

Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560–575 (2016).

Article 
CAS 

Google Scholar
 

Boudreau, B. P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142 (1996).

Article 
CAS 

Google Scholar
 

Hollweg, T., Gilmour, C. C. & Mason, R. Mercury and methylmercury cycling in sediments of the mid‐Atlantic continental shelf and slope. Limnol. Oceanogr. 55, 2703–2722 (2010).

Article 
CAS 

Google Scholar
 

Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).

Article 

Google Scholar
 

De Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).

Article 

Google Scholar
 

Liu, M. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).

Article 

Google Scholar
 

Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Modell. Softw. 25, 837–853 (2010).

Article 

Google Scholar