Pawar, A. Y., Sonawane, D. D., Erande, K. B. & Derle, D. V. Terahertz technology and its applications. Drug Invent. Today 5, 157–163 (2013).
Shen, S. et al. Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Optical Mater. 10, 2101008 (2022).
Naftaly, M., Vieweg, N. & Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 19, 4203 (2019).
Amini, T., Jahangiri, F., Ameri, Z. & Hemmatian, M. A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12, (2021).
Kawano, Y. Terahertz waves: a tool for condensed matter, the life sciences and astronomy. Contemp. Phys. 54, 143–165 (2013).
Fedorov, V. Y. & Tzortzakis, S. Powerful terahertz waves from long-wavelength infrared laser filaments. Light Sci. Appl. 9, 186 (2020).
Plusquellic, D. F., Siegrist, K., Heilweil, E. J. & Esenturk, O. Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8, 2412–2431 (2007).
Song, H.-J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011).
Yang, Y.-T., Callegari, C., Feng, X., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).
Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).
Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013).
Ricci, F., Cuairan, M. T., Conangla, G. P., Schell, A. W. & Quidant, R. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Lett. 19, 6711–6715 (2019).
Zhang, X., Myers, E., Sader, J. & Roukes, M. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528–1534 (2013).
Laurent, L., Yon, J.-J., Moulet, J.-S., Roukes, M. & Duraffourg, L. 12-μ m-pitch electromechanical resonator for thermal sensing. Phys. Rev. Appl. 9, 024016 (2018).
Juvé, V. et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 10, 1853–1858 (2010).
Rozas, G. et al. Lifetime of THz acoustic nanocavity modes. Phys. Rev. Lett. 102, 015502 (2009).
Rips, S. & Hartmann, M. J. Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013).
Stannigel, K. et al. Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012).
Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).
Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).
Forstner, S., Zych, M., Basiri-Esfahani, S., Khosla, K. E. & Bowen, W. P. Nanomechanical test of quantum linearity. Optica 7, 1427–1434 (2020).
Clerk, A., Lehnert, K., Bertet, P., Petta, J. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).
Velez, S. T. et al. Preparation and decay of a single quantum of vibration at ambient conditions. Phys. Rev. X 9, 041007 (2019).
Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).
Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 1–6 (2023).
Xie, J., Shen, M. & Tang, H. X. High acoustic velocity x-cut lithium niobate sub-terahertz electromechanics. Appl. Phys. Lett. 124, (2024).
Xie, J., Shen, M. & Tang, H. X. Sub-terahertz optomechanics. Optica 11, 724–725 (2024).
Kramer, J. et al. Acoustic resonators above 100 GHz. Appl. Phys. Lett. 127, 012204 (2025).
Wang, D., Xie, J., Guo, Y., Shen, M. & Tang, H. X. Noncontact excitation of multi-GHz lithium niobate electromechanical resonators. Microsyst. Nanoeng. 10, 124 (2024).
Gruenke-Freudenstein, R. G. et al. Surface and bulk two-level-system losses in lithium niobate acoustic resonators. Phys. Rev. Appl. 23, 064055 (2025).
Soyer, C., Cattan, E. & Remiens, D. Electrical damage induced by reactive ion-beam etching of lead-zirconate-titanate thin films. J. Appl. Phys. 97, (2005).
Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High-quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, (2006).
Chen, F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys. 106, (2009).
Wang, J. et al. Process-induced poling and plasma-induced damage of thin film PZT. Microelectron. Eng. 177, 13–18 (2017).
Rodriguez, J. et al. Direct detection of Akhiezer damping in a silicon MEMS resonator. Sci. Rep. 9, 2244 (2019).
Wu, C.-C. et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing. Jpn. J. Appl. Phys. 45, 3822 (2006).
Zhong, Z.-W. Recent developments and applications of chemical mechanical polishing. Int. J. Adv. Manuf. Technol. 109, 1419–1430 (2020).
Zhang, Y. et al. Investigation of the defect density in ultra-thin Al2O3 films grown using atomic layer deposition. Surf. Coat. Technol. 205, 3334–3339 (2011).
Østreng, E., Sønsteby, H. H., Sajavaara, T., Nilsen, O. & Fjellvåg, H. Atomic layer deposition of ferroelectric LiNbO3. J. Mater. Chem. C 1, 4283–4290 (2013).
Cleland, A. N. & Roukes, M. L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996).
Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999).
Cleland, A., Pophristic, M. & Ferguson, I. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett. 79, 2070–2072 (2001).
Sekaric, L., Carr, D., Evoy, S., Parpia, J. & Craighead, H. G. Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues. Sens. Actuators A Phys. 101, 215–219 (2002).
Sekaric, L. et al. Nanomechanical resonant structures in nanocrystalline diamond. Appl. Phys. Lett. 81, 4455–4457 (2002).
Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).
Ruby, R., Bradley, P., Larson, J. & Oshmyansky, Y. PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron. Lett. 35, 794–795 (1999).
Gabl, R. et al. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens. Bioelectron. 19, 615–620 (2004).
O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).
Kim, E., Choi, Y.-K., Song, J. & Lee, J. Detection of various self-assembled monolayers by AlN-based film bulk acoustic resonator. Mater. Res. Bull. 48, 5076–5079 (2013).
Manenti, R. et al. Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016).
Fu, S. et al. High-frequency surface acoustic wave devices based on ZnO/SiC layered structure. IEEE Electron Device Lett. 40, 103–106 (2018).
Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).
Mayor, F. M. et al. Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire. Phys. Rev. Appl. 15, 014039 (2021).
Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).
Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346–352 (2016).
Hong, S. et al. Hanbury brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).
Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
Kadota, M. & Ogami, T. 5.4 GHz Lamb wave resonator on LiNbO3 thin crystal plate and its application. Jpn. J. Appl. Phys. 50, 07HD11 (2011).
Yang, Y., Lu, R., Manzaneque, T. & Gong, S. Toward Ka band acoustics: Lithium niobate asymmetrical mode piezoelectric MEMS resonators. In Proc. IEEE International Frequency Control Symposium (IFCS), 1–5 (IEEE, 2018).
Yang, Y., Lu, R., Gao, L. & Gong, S. 10–60-GHz electromechanical resonators using thin-film lithium niobate. IEEE Trans. Microw. Theory Tech. 68, 5211–5220 (2020).