Pawar, A. Y., Sonawane, D. D., Erande, K. B. & Derle, D. V. Terahertz technology and its applications. Drug Invent. Today 5, 157–163 (2013).

Article 

Google Scholar
 

Shen, S. et al. Recent advances in the development of materials for terahertz metamaterial sensing. Adv. Optical Mater. 10, 2101008 (2022).

Article 
CAS 

Google Scholar
 

Naftaly, M., Vieweg, N. & Deninger, A. Industrial applications of terahertz sensing: State of play. Sensors 19, 4203 (2019).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Amini, T., Jahangiri, F., Ameri, Z. & Hemmatian, M. A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12, (2021).

Kawano, Y. Terahertz waves: a tool for condensed matter, the life sciences and astronomy. Contemp. Phys. 54, 143–165 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Fedorov, V. Y. & Tzortzakis, S. Powerful terahertz waves from long-wavelength infrared laser filaments. Light Sci. Appl. 9, 186 (2020).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Plusquellic, D. F., Siegrist, K., Heilweil, E. J. & Esenturk, O. Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8, 2412–2431 (2007).

Article 
PubMed 
CAS 

Google Scholar
 

Song, H.-J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011).

Article 
ADS 

Google Scholar
 

Yang, Y.-T., Callegari, C., Feng, X., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Ricci, F., Cuairan, M. T., Conangla, G. P., Schell, A. W. & Quidant, R. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Lett. 19, 6711–6715 (2019).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Zhang, X., Myers, E., Sader, J. & Roukes, M. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528–1534 (2013).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Laurent, L., Yon, J.-J., Moulet, J.-S., Roukes, M. & Duraffourg, L. 12-μ m-pitch electromechanical resonator for thermal sensing. Phys. Rev. Appl. 9, 024016 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Juvé, V. et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 10, 1853–1858 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Rozas, G. et al. Lifetime of THz acoustic nanocavity modes. Phys. Rev. Lett. 102, 015502 (2009).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Rips, S. & Hartmann, M. J. Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Stannigel, K. et al. Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).

Article 
CAS 

Google Scholar
 

Forstner, S., Zych, M., Basiri-Esfahani, S., Khosla, K. E. & Bowen, W. P. Nanomechanical test of quantum linearity. Optica 7, 1427–1434 (2020).

Article 
ADS 

Google Scholar
 

Clerk, A., Lehnert, K., Bertet, P., Petta, J. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

Article 
CAS 

Google Scholar
 

Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

Article 
ADS 

Google Scholar
 

Velez, S. T. et al. Preparation and decay of a single quantum of vibration at ambient conditions. Phys. Rev. X 9, 041007 (2019).

CAS 

Google Scholar
 

Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

Article 
CAS 

Google Scholar
 

Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 1–6 (2023).

Xie, J., Shen, M. & Tang, H. X. High acoustic velocity x-cut lithium niobate sub-terahertz electromechanics. Appl. Phys. Lett. 124, (2024).

Xie, J., Shen, M. & Tang, H. X. Sub-terahertz optomechanics. Optica 11, 724–725 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Kramer, J. et al. Acoustic resonators above 100 GHz. Appl. Phys. Lett. 127, 012204 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Wang, D., Xie, J., Guo, Y., Shen, M. & Tang, H. X. Noncontact excitation of multi-GHz lithium niobate electromechanical resonators. Microsyst. Nanoeng. 10, 124 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gruenke-Freudenstein, R. G. et al. Surface and bulk two-level-system losses in lithium niobate acoustic resonators. Phys. Rev. Appl. 23, 064055 (2025).

Article 
ADS 

Google Scholar
 

Soyer, C., Cattan, E. & Remiens, D. Electrical damage induced by reactive ion-beam etching of lead-zirconate-titanate thin films. J. Appl. Phys. 97, (2005).

Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High-quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, (2006).

Chen, F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys. 106, (2009).

Wang, J. et al. Process-induced poling and plasma-induced damage of thin film PZT. Microelectron. Eng. 177, 13–18 (2017).

Article 
CAS 

Google Scholar
 

Rodriguez, J. et al. Direct detection of Akhiezer damping in a silicon MEMS resonator. Sci. Rep. 9, 2244 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, C.-C. et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing. Jpn. J. Appl. Phys. 45, 3822 (2006).

Article 
ADS 
CAS 

Google Scholar
 

Zhong, Z.-W. Recent developments and applications of chemical mechanical polishing. Int. J. Adv. Manuf. Technol. 109, 1419–1430 (2020).

Article 

Google Scholar
 

Zhang, Y. et al. Investigation of the defect density in ultra-thin Al2O3 films grown using atomic layer deposition. Surf. Coat. Technol. 205, 3334–3339 (2011).

Article 
CAS 

Google Scholar
 

Østreng, E., Sønsteby, H. H., Sajavaara, T., Nilsen, O. & Fjellvåg, H. Atomic layer deposition of ferroelectric LiNbO3. J. Mater. Chem. C 1, 4283–4290 (2013).

Article 

Google Scholar
 

Cleland, A. N. & Roukes, M. L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999).

Article 
ADS 
CAS 

Google Scholar
 

Cleland, A., Pophristic, M. & Ferguson, I. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett. 79, 2070–2072 (2001).

Article 
ADS 
CAS 

Google Scholar
 

Sekaric, L., Carr, D., Evoy, S., Parpia, J. & Craighead, H. G. Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues. Sens. Actuators A Phys. 101, 215–219 (2002).

Article 
ADS 
CAS 

Google Scholar
 

Sekaric, L. et al. Nanomechanical resonant structures in nanocrystalline diamond. Appl. Phys. Lett. 81, 4455–4457 (2002).

Article 
ADS 
CAS 

Google Scholar
 

Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Ruby, R., Bradley, P., Larson, J. & Oshmyansky, Y. PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron. Lett. 35, 794–795 (1999).

Article 
ADS 

Google Scholar
 

Gabl, R. et al. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens. Bioelectron. 19, 615–620 (2004).

Article 
PubMed 
CAS 

Google Scholar
 

O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Kim, E., Choi, Y.-K., Song, J. & Lee, J. Detection of various self-assembled monolayers by AlN-based film bulk acoustic resonator. Mater. Res. Bull. 48, 5076–5079 (2013).

Article 
CAS 

Google Scholar
 

Manenti, R. et al. Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016).

Article 
ADS 

Google Scholar
 

Fu, S. et al. High-frequency surface acoustic wave devices based on ZnO/SiC layered structure. IEEE Electron Device Lett. 40, 103–106 (2018).

Article 
ADS 

Google Scholar
 

Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Mayor, F. M. et al. Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire. Phys. Rev. Appl. 15, 014039 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

Article 

Google Scholar
 

Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

Article 
CAS 

Google Scholar
 

Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346–352 (2016).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hong, S. et al. Hanbury brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

Article 
ADS 
MathSciNet 
PubMed 
CAS 

Google Scholar
 

Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Kadota, M. & Ogami, T. 5.4 GHz Lamb wave resonator on LiNbO3 thin crystal plate and its application. Jpn. J. Appl. Phys. 50, 07HD11 (2011).

Article 

Google Scholar
 

Yang, Y., Lu, R., Manzaneque, T. & Gong, S. Toward Ka band acoustics: Lithium niobate asymmetrical mode piezoelectric MEMS resonators. In Proc. IEEE International Frequency Control Symposium (IFCS), 1–5 (IEEE, 2018).

Yang, Y., Lu, R., Gao, L. & Gong, S. 10–60-GHz electromechanical resonators using thin-film lithium niobate. IEEE Trans. Microw. Theory Tech. 68, 5211–5220 (2020).

Article 
ADS 

Google Scholar