Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555 (2012).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189 (2011).
Zhu, L. Switching of perpendicular magnetization by spin-orbit torque. Adv. Mater. 35, 2300853 (2023).
Haney, P. M., Lee, H. W., Lee, K. J., Manchon, A. & Stiles, M. D. Current-induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys. Rev. B 87, 174411 (2013).
Pai, C., Ou, Y., Vilela-Leão, L. H., Ralph, D. C. & Buhrman, R. A. Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015).
Zhu, L., Zhu, L., Sui, M. L., Ralph, D. C. & Buhrman, R. A. Variation of the giant intrinsic spin Hall conductivity of Pt with carrier lifetime. Sci. Adv. 5, eaav8025 (2019).
Zhu, L., Ralph, D. C. & Buhrman, R. A. Maximizing spin-orbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. 8, 031308 (2021).
Liu, Y., Yuan, Z., Wesselink, R. J. H., Starikov, A. A. & Kelly, P. J. Interface enhancement of Gilbert damping from first principles. Phys. Rev. Lett. 113, 207202 (2014).
Amin, V. P., Zemen, J. & Stiles, M. D. Interface-generated spin currents. Phys. Rev. Lett. 121, 136805 (2018).
Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).
Li, S., Shen, K. & Xia, K. Interfacial spin Hall effect and spin swapping in Fe-Au bilayers from first principles. Phys. Rev. B 99, 134427 (2019).
Kim, K.-W., Lee, K.-J., Sinova, J., Lee, H.-W. & Stiles, M. D. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces. Phys. Rev. B 96, 104438 (2016).
Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).
Mohn, P. in Magnetism in the solid state: an introduction, edited by M. Cardona, P. Fulde, K. von Klitzing, and H.-J. Queisser, Springer Series in Solid-State Sciences, Vol. 134 (Springer, 2003).
Tinkham, M. Group Theory and Quantum Mechanics, Dover Books on Chemistry (Dover, 2003).
Rang, M. & Kelly, P. J. Orbital relaxation length from first-principles scattering calculations. Phys. Rev. B 109, 214427 (2024).
Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques. Phys. Rev. Lett. 125, 177201 (2020).
Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).
Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).
Kim, J. et al. Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/ Cu/Al2O3 trilayers. Phys. Rev. B 103, L020407 (2021).
Dutta, S. & Tulapurkar, A. A. Observation of nonlocal orbital transport and sign reversal of damping-like torque in Nb/Ni and Ta/Ni bilayers. Phys. Rev. B 106, 184406 (2022).
Ding, S. et al. Observation of the orbital Rashba-Edelstein magnetoresistance. Phys. Rev. Lett. 128, 067201 (2022).
Go, D., Jo, D., Kim, C. & Lee, H. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).
Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals. Phys. Rev. B 98, 214405 (2018).
Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).
Bose, A. et al. Detection of long-range orbital-Hall torques. Phys. Rev. B 107, 134423 (2023).
Li, T. et al. Giant orbital-to-spin conversion for efficient current-induced magnetization switching of ferrimagnetic insulator. Nano Lett. 23, 7174 (2023).
Xie, H. et al. Efficient noncollinear antiferromagnetic state switching induced by the orbital Hall effect in chromium. Nano Lett. 23, 10274 (2023).
Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).
Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52 (2023).
Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).
Moriya, H. et al. Observation of long-range current-induced torque in Ni/Pt bilayers. Nano Lett. 24, 6459 (2024).
Fukunaga, R., Haku, S., Hayashi, H. & Ando, K. Orbital torque originating from orbital Hall effect in Zr. Phys. Rev. Res. 5, 023054 (2023).
Fukunaga, R., Haku, S., Gao, T., Hayashi, H. & Ando, K. Impact of crystallinity on orbital torque generation in ferromagnets. Phys. Rev. B 109, 144412 (2024).
Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646 (2024).
Zheng, Z. et al. Effective electrical manipulation of a topological antiferromagnet by orbital torques. Nat. Commun. 15, 745 (2024).
Santos, E. et al. Exploring orbital-charge conversion mediated by interfaces with CuOx through spin-orbital pumping. Phys. Rev. B 109, 014420 (2024).
Mendoza-Rodarte, J. A., Cosset-Chéneau, M., van Wees, B. J. & Guimarães, M. H. D. Efficient magnon injection and detection via the orbital Rashba-Edelstein effect. Phys. Rev. Lett. 132, 226704 (2024).
Ding, S., Kang, M., Legrand, W. & Gambardella, P. Orbital torque in rare-earth transition-metal ferrimagnets. Phys. Rev. Lett. 132, 236702 (2024).
Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).
Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).
Park, W. et al. Measurement of resistance and spin-memory loss (spin relaxation) at interfaces using sputtered current perpendicular-to-plane exchange-biased spin valves. Phys. Rev. B 62, 1178 (2000).
Zhu, L., Zhu, L. & Buhrman, R. A. Fully spin-transparent magnetic interfaces enabled by insertion of a thin paramagnetic NiO layer. Phys. Rev. Lett. 126, 107204 (2021).
Zhu, L., Zhang, X. S., Muller, D. A., Ralph, D. C. & Buhrman, R. A. Observation of strong bulk damping-like spin-orbit torque in chemically disordered ferromagnetic single layers. Adv. Funct. Mater. 30, 2005201 (2020).
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).
Liu, Q. et al. Efficient Generation of out-of-plane polarized spin current in polycrystalline heavy metal devices with broken electric symmetries. Adv. Mater. 36, 2406552 (2024).
Liu, Q. & Zhu, L. Current-induced perpendicular effective magnetic field in magnetic heterostructures. Appl. Phys. Rev. 9, 041401 (2022).
Nakayama, H. et al. Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Phys. Rev. B 85, 144408 (2012).
Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).
Zhu, L., Zhu, L., Ralph, D. C. & Buhrman, R. A. Origin of strong two-magnon scattering in heavy-metal/ferromagnet/oxide heterostructures. Phys. Rev. Appl. 13, 034038 (2020).
Karimeddiny, S., Mittelstaedt, J. A., Buhrman, R. A. & Ralph, D. C. Transverse and longitudinal spin-torque ferromagnetic resonance for improved measurement of spin-orbit torque. Phys. Rev. Appl. 14, 024024 (2020).
Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).
Shanavas, K. V., Popovic, Z. S. & Satpathy, S. Theoretical model for Rashba spin-orbit interaction in d electrons. Phys. Rev. B 90, 165108 (2014).
Kim, D. & Liu, F. Topological alloy engineering and locally linearized gap dependence on concentration. Phys. Rev. B 106, 085105 (2022).
He, P. et al. Chemical composition tuning of the anomalous Hall effect in isoelectronic L10FePd1-xPtx alloy films. Phys. Rev. Lett. 109, 066402 (2012).
Zhu, L., Ralph, D. C. & Buhrman, R. A. Spin-orbit torques in heavy-metal-ferromagnet bilayers with varying strengths of interfacial spin-orbit coupling. Phys. Rev. Lett. 122, 077201 (2019).
Zhu, L., Ralph, D. C. & Buhrman, R. A. Effective spin-mixing conductance of heavy metal ferromagnet interfaces. Phys. Rev. Lett. 123, 057203 (2019).
Zhu, L., Zhu, L., Ma, X., Li, X. & Buhrman, R. A. Critical role of orbital hybridization in Dzyaloshinskii-Mariya interaction of magnetic interfaces. Commun. Phys. 5, 151 (2022).
Seki, T., Lau, Y., Iihama, S. & Takanashi, K. Spin-orbit torque in a Ni-Fe single layer. Phys. Rev. B 104, 094430 (2021).
Du, Y., Thompson, R., Kohda, M. & Nitta, J. Origin of spin–orbit torque in single-layer CoFeB investigated via in-plane harmonic Hall measurements. AIP Adv. 11, 025033 (2021).
Zhu, L., Ralph, D. C. & Buhrman, R. A. Unveiling the mechanism of bulk spin-orbit torques within chemically disordered FexPt1-x single layers. Adv. Funct. Mater. 31, 2103898 (2021).
Liu, Q., Zhu, L., Zhang, X. S., Muller, D. A. & Ralph, D. C. Giant bulk spin–orbit torque and efficient electrical switching in single ferrimagnetic FeTb layers with strong perpendicular magnetic anisotropy. Appl. Phys. Rev. 9, 021402 (2022).
Zhu, L. & Ralph, D. C. Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets. Nat. Commun. 14, 1778 (2023).
Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).
Zhou, H. & Feng, T. Theoretical upper limits of the thermal conductivity of Si3N4. Appl. Phys. Lett. 122, 182203 (2023).
Liu, L., Liu, G. & Xing, L. Zhu, Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction. Nat. Commun. 15, 2978 (2024).
Zhang, H. et al. Tuning terahertz emission generated by anomalous Nernst effect in ferromagnetic metal. Appl. Phys. Rev. 10, 021417 (2023).
Feng, Z. et al. Anomalous Nernst effect induced terahertz emission in a single ferromagnetic film. Nano Lett. 23, 8171 (2023).
Zhu, L., Liu, Q. & Wang, X. Physics origin of universal unusual magnetoresistance. Natl Sci. Rev. 12, nwaf240 (2025).