Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, L. et al. Spatiotemporal omics for biology and medicine. Cell 187, 4488–4519 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Jain, S. & Eadon, M. T. Spatial transcriptomics in health and disease. Nat. Rev. Nephrol. 20, 659–671 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Alexandrov, T., Saez-Rodriguez, J. & Saka, S. K. Enablers and challenges of spatial omics, a melting pot of technologies. Mol. Syst. Biol. 19, e10571 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

De Jonghe, J. et al. scTrends: a living review of commercial single-cell and spatial ’omic technologies. Cell Genom. 4, 100723 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gulati, G. S., D’Silva, J. P., Liu, Y., Wang, L. & Newman, A. M. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat. Rev. Mol. Cell Biol. 26, 11–31 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e19 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

Article 
PubMed 

Google Scholar
 

Cui, L. et al. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat. Cell Biol. 27, 360–369 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Pavon, N. et al. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. Cell Rep. Methods 4, 100689 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sanchís-Calleja, F. et al. Decoding morphogen patterning of human neural organoids with a multiplexed single-cell transcriptomic screen. Preprint at bioRxiv https://doi.org/10.1101/2024.02.08.579413 (2024).

Bertacchi, M., Maharaux, G., Loubat, A., Jung, M. & Studer, M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 13, e98096 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Amin, N. D. et al. Generating human neural diversity with a multiplexed morphogen screen in organoids. Cell Stem Cell 31, 1831–1846.e9 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8, 70 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

Article 
PubMed 

Google Scholar
 

Carmona-Fontaine, C. et al. Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl Acad. Sci. USA 114, 2934–2939 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haley, M. J. et al. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. Sci. Adv. 10, eadj3301 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, W. et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell 42, 815–832.e12 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Rashidi, A. et al. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab. 36, 62–77.e8 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Sun, H. et al. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front. Immunol. 13, 1042835 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kureshi, C. T. & Dougan, S. K. Cytokines in cancer. Cancer Cell 43, 15–35 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, L. et al. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 9, 225 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Campillo, N. et al. Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental setting and proof of concept. Front. Oncol. 9, 43 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Auxillos, J. et al. Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes. Sci. Adv. 10, eadn3448 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kueckelhaus, J. et al. Inferring histology-associated gene expression gradients in spatial transcriptomic studies. Nat. Commun. 15, 7280 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, C. et al. SpaceWalker enables interactive gradient exploration for spatial transcriptomics data. Cell Rep. Methods 3, 100645 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chitra, U. et al. Mapping the topography of spatial gene expression with interpretable deep learning. Nat. Methods 22, 298–309 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. Nat. Genet. 55, 1998–2008 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tabula Sapiens Consortium. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

Article 

Google Scholar
 

Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mo, C.-K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, C. et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer 22, 170 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chu, X., Tian, Y. & Lv, C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol. Cancer 23, 150 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nasir, I. et al. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol. 44, 971–985 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ianevski, A. et al. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat. Commun. 15, 8579 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tirosh, I. & Suva, M. L. Cancer cell states: lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 42, 1497–1506 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 187, 6760–6779.e24 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Watson, B. R. et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat. Commun. 16, 319 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mayr, C. H. et al. Spatial transcriptomic characterization of pathologic niches in IPF. Sci. Adv. 10, eadl5473 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Franzén, L. et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lázár, E. et al. Spatiotemporal gene expression and cellular dynamics of the developing human heart. Nat. Genet. https://doi.org/10.1038/s41588-025-02352-6 (2025).

He, P. et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e25 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Greenbaum, S. et al. A spatially resolved timeline of the human maternal-fetal interface. Nature 619, 595–605 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yayon, N. et al. A spatial human thymus cell atlas mapped to a continuous tissue axis. Nature 635, 708–718 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Li, X. et al. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26, 891–901 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sountoulidis, A. et al. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25, 351–365 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, B. et al. A human embryonic limb cell atlas resolved in space and time. Nature 635, 668–678 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

To, K. et al. A multi-omic atlas of human embryonic skeletal development. Nature 635, 657–667 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Quach, H. et al. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat. Commun. 15, 5898 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sariyar, S. et al. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat. Commun. 15, 9381 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gopee, N. H. et al. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature 635, 679–689 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cranley, J. et al. Multiomic analysis reveals developmental dynamics of the human heart in health and disease. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591736 (2024).

Bayraktar, S. et al. High-resolution atlas of the developing human heart and the great vessels. Preprint at bioRxiv https://doi.org/10.1101/2024.04.27.591127 (2024).

Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lyu, L. et al. Simultaneous profiling of host expression and microbial abundance by spatial metatranscriptome sequencing. Genome Res. 33, 401–411 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, B. et al. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat. Commun. 16, 1230 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saarenpää, S. et al. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. Nat. Biotechnol. 42, 1384–1393 (2024).

Article 
PubMed 

Google Scholar
 

Sarfatis, A., Wang, Y., Twumasi-Ankrah, N. & Moffitt, J. R. Highly multiplexed spatial transcriptomics in bacteria. Science 387, eadr0932 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sounart, H. et al. Dual spatially resolved transcriptomics for human host-pathogen colocalization studies in FFPE tissue sections. Genome Biol. 24, 237 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rendeiro, A. F. et al. The spatial landscape of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J. T. H. et al. Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19. Nat. Commun. 16, 1979 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, T. et al. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. Nat. Aging 4, 1598–1618 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pita-Juarez, Y. et al. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol. 26, 56 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, J., Larsson, L., Swarbrick, A. & Lundeberg, J. Spatial landscapes of cancers: insights and opportunities. Nat. Rev. Clin. Oncol. 21, 660–674 (2024).

Article 
PubMed 

Google Scholar
 

Gong, D., Arbesfeld-Qiu, J. M., Perrault, E., Bae, J. W. & Hwang, W. L. Spatial oncology: translating contextual biology to the clinic. Cancer Cell 42, 1653–1675 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, M., Zhang, T., Xia, R., Wei, Y. & Wei, X. Targeting the tumor stroma for cancer therapy. Mol. Cancer 21, 208 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bilotta, M. T., Antignani, A. & Fitzgerald, D. J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 13, 954992 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rui, R., Zhou, L. & He, S. Cancer immunotherapies: advances and bottlenecks. Front. Immunol. 14, 1212476 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Teillaud, J.-L., Houel, A., Panouillot, M., Riffard, C. & Dieu-Nosjean, M.-C. Tertiary lymphoid structures in anticancer immunity. Nat. Rev. Cancer 24, 629–646 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dong, Y., Wang, T. & Wu, H. Tertiary lymphoid structures in autoimmune diseases. Front. Immunol. 14, 1322035 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

Article 
PubMed 

Google Scholar
 

Castillo, R. L. et al. Spatial transcriptomics stratifies psoriatic disease severity by emergent cellular ecosystems. Sci. Immunol. 8, eabq7991 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nayar, S. et al. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren’s syndrome. Nat. Commun. 16, 5 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952.e5 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bandyopadhyay, S. et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 187, 3120–3140.e29 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dasdemir, E. et al. Spatial transcriptomics reveals inflammation and trans-differentiation states of acute myeloid leukemia in extramedullary and medullary tissues. Preprint at bioRxiv https://doi.org/10.1101/2024.11.11.622999 (2024).

Vadakekolathu, J. et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med. 12, eaaz0463 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rutella, S. et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J. Clin. Invest. 132, e159579 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koedijk, J. B. et al. A multidimensional analysis reveals distinct immune phenotypes and the composition of immune aggregates in pediatric acute myeloid leukemia. Leukemia 38, 2332–2343 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, Y. et al. Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus. Nat. Neurosci. 28, 415–430 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, E. D. et al. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 638, 160–171 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Avey, D. R. et al. Uncovering plaque-glia niches in human Alzheimer’s disease brains using spatial transcriptomics. Mol. Neurodegener. Adv. 1, 2 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Miyoshi, E. et al. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease. Nat. Genet. 56, 2704–2717 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, M. et al. The spatial landscape of glial pathology and T-cell response in Parkinson’s disease substantia nigra. Nat. Commun. 16, 7146 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z. et al. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 32, 479–498 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).

Yamada, S. et al. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat. Cardiovasc. Res. 1, 1072–1083 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wünnemann, F. et al. Spatial omics of acute myocardial infarction reveals a novel mode of immune cell infiltration. Preprint at bioRxiv https://doi.org/10.1101/2024.05.20.594955 (2024).

He, J. et al. Single-cell and spatial transcriptomic analyses reveals the dynamic transcript profiles of myocardial lymphangiogenesis post myocardial infarction. eLife 13, RP99192 (2024).


Google Scholar
 

Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eyres, M. et al. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. Cell Rep. 40, 111230 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fischer, D. S., Villanueva, M. A., Winter, P. S. & Shalek, A. K. Adapting systems biology to address the complexity of human disease in the single-cell era. Nat. Rev. Genet. 26, 514–531 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Takahama, M. et al. A pairwise cytokine code explains the organism-wide response to sepsis. Nat. Immunol. 25, 226–239 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pierre, A., Lancel, S. & Preau, S. Organ crosstalk and dysfunction in sepsis: harnessing emerging biotechnologies for future breakthroughs. Ann. Intensive Care 14, 161 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lilja, S. et al. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep. Med. 4, 100956 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tsagiopoulou, M., Rashmi, S., Aguilar-Fernandez, S., Nieto, J. & Gut, I. G. Multi-organ single-cell transcriptomics of immune cells uncovered organ-specific gene expression and functions. Sci. Data 11, 316 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Wen, J. et al. The genetic architecture of biological age in nine human organ systems. Nat. Aging 4, 1290–1307 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carrolo, M. et al. Metastatic organotropism: a brief overview. Front. Oncol. 14, 1358786 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dunbar, K. J. et al. Regulation of metastatic organotropism. Trends Cancer 11, 216–231 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Kuett, L. et al. Distant metastases of breast cancer resemble primary tumors in cancer cell composition but differ in immune cell phenotypes. Cancer Res. 85, 15–31 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Klughammer, J. et al. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nat. Med. 30, 3236–3249 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johnson, B. E. et al. An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer. Cell Rep. Med. 3, 100525 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tagore, S. et al. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat. Med. 31, 1351–1363 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Q. et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat. Commun. 13, 5983 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sundar, R. et al. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination. Gut 70, 1823–1832 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhao, J. J. et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases. Gastroenterology 167, 1384–1398.e4 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Levy, J. J. et al. Identification of spatial proteomic signatures of colon tumor metastasis: a digital spatial profiling approach. Am. J. Pathol. 193, 778–795 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sathe, A. et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts. Clin. Cancer Res. 29, 244–260 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, F. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci. Adv. 9, eadf5464 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Wei, C. et al. Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses. Nat. Commun. 14, 8119 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boe, R. H., Triandafillou, C. G., Lazcano, R., Wargo, J. A.& Raj, A. Spatial transcriptomics reveals influence of microenvironment on intrinsic fates in melanoma therapy resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.06.30.601416 (2024).

Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci. Transl. Med. 15, eadd1016 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Du, Y., Ding, X. & Ye, Y. The spatial multi-omics revolution in cancer therapy: precision redefined. Cell Rep. Med. 5, 101740 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Di Mauro, F. & Arbore, G. Spatial dissection of the immune landscape of solid tumors to advance precision medicine. Cancer Immunol. Res. 12, 800–813 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bollhagen, A. & Bodenmiller, B. Highly multiplexed tissue imaging in precision oncology and translational cancer research. Cancer Discov. 14, 2071–2088 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Clifton, K. et al. STalign: alignment of spatial transcriptomics data using diffeomorphic metric mapping. Nat. Commun. 14, 8123 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

[No authors listed] STAligner enables the integration and alignment of multiple spatial transcriptomics datasets. Nat. Comput. Sci. 3, 831–832 (2023).

Article 

Google Scholar
 

Mitchel, J., Gao, T., Cole, E., Petukhov, V. & Kharchenko, P. V. Impact of segmentation errors in analysis of spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.01.02.631135 (2025).

Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Si, Y. et al. FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics. Nat. Methods 21, 1843–1854 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Alam, S. et al. Popari: modeling multisample variation in spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2025.05.08.652741 (2025).

Holdener, C. & De Vlaminck, I. Smoothie: efficient inference of spatial co-expression networks from denoised spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640406 (2025).

Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andersson, A. et al. A landmark-based common coordinate framework for spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2021.11.11.468178 (2021).

Börner, K. et al. Human biomolecular atlas program (HuBMAP): 3D human reference atlas construction and usage. Nat. Methods 22, 845–860 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Börner, K. et al. Anatomical structures, cell types and biomarkers of the human reference atlas. Nat. Cell Biol. 23, 1117–1128 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ekvall, M. et al. Spatial landmark detection and tissue registration with deep learning. Nat. Methods 21, 673–679 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat. Med. 30, 863–874 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, X. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 634, 970–978 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chelebian, E., Avenel, C. & Wählby, C. Combining spatial transcriptomics with tissue morphology. Nat. Commun. 16, 4452 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jaume, G. et al. HEST-1k: a dataset for spatial transcriptomics and histology image analysis. In 38th Conference on Neural Information Processing Systems (NeurIPS, 2024).

Chelebian, E. et al. Discovery of tumour indicating morphological changes in benign prostate biopsies through AI. Sci. Rep. 15, 30770 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, B., Bergenstråhle, L. & Lundeberg, J. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

Article 
PubMed 

Google Scholar
 

Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42, 1372–1377 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. Benchmarking the translational potential of spatial gene expression prediction from histology. Nat. Commun. 16, 1544 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

Article 
PubMed 

Google Scholar
 

Monjo, T., Koido, M., Nagasawa, S., Suzuki, Y. & Kamatani, Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci. Rep. 12, 4133 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cisternino, F. et al. Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types. Nat. Commun. 15, 5906 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, S. et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat. Biotechnol. 43, 223–235 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, W. et al. A visual-omics foundation model to bridge histopathology with spatial transcriptomics. Nat. Methods 22, 1568–1582 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hoang, D.-T. et al. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat. Cancer 5, 1305–1317 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, M. Y. et al. A multimodal generative AI copilot for human pathology. Nature 634, 466–473 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. SpatialAgent: an autonomous AI agent for spatial biology. Preprint at bioRxiv https://doi.org/10.1101/2025.04.03.646459 (2025).

Vorontsov, E. et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30, 2924–2935 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18, 1352–1362 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wenckstern, J. et al. AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery. Preprint at https://doi.org/10.48550/arXiv.2501.06039 (2025).

Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Preprint at https://doi.org/10.48550/arXiv.2409.11654 (2024).

Zhang, J. et al. Tahoe-100M: a giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).

Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Teo, A. Y. Y. et al. Identification of perturbation-responsive regions and genes in comparative spatial transcriptomics atlases. Preprint at bioRxiv https://doi.org/10.1101/2024.06.13.598641 (2024).

Megas, S. et al. Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling. Preprint at https://doi.org/10.48550/arXiv.2409.05804 (2024).

Frey, N.C. et al. Lab-in-the-loop therapeutic antibody design with deep learning. Preprint at bioRxiv https://doi.org/10.1101/2025.02.19.639050 (2025).

Laubenbacher, R., Mehrad, B., Shmulevich, I. & Trayanova, N. Digital twins in medicine. Nat. Comput. Sci. 4, 184–191 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bhatia, H. S. et al. Spatial proteomics in three-dimensional intact specimens. Cell 185, 5040–5058.e19 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kanatani, S. et al. Whole-brain spatial transcriptional analysis at cellular resolution. Science 386, 907–915 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Gandin, V. et al. Deep-tissue transcriptomics and subcellular imaging at high spatial resolution. Science 388, eadq2084 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fang, R. et al. Three-dimensional single-cell transcriptome imaging of thick tissues. eLife 12, RP90029 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ertürk, A. Deep 3D histology powered by tissue clearing, omics and AI. Nat. Methods 21, 1153–1165 (2024).

Article 
PubMed 

Google Scholar
 

Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qiu, X. et al. Spatiotemporal modeling of molecular holograms. Cell 187, 7351–7373.e61 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Almagro-Pérez, C. et al. AI-driven 3D spatial transcriptomics. Preprint at https://doi.org/10.48550/arXiv.2502.17761 (2025).

Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, X. et al. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 17, 72 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kiessling, P. & Kuppe, C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med. 16, 14 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Eisenstein, M. Seven technologies to watch in 2022. Nature 601, 658–661 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200–1209 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Long, Y. et al. Deciphering spatial domains from spatial multi-omics with SpatialGlue. Nat. Methods 21, 1658–1667 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coleman, K. et al. Resolving tissue complexity by multimodal spatial omics modeling with MISO. Nat. Methods 22, 530–538 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, S., Lin, S. & Yang, C. The dawn of spatiotemporal transcriptomics. Biomed. Anal. 1, 154–161 (2024).

Article 

Google Scholar
 

Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat. Commun. 12, 3358 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rietjens, R. G. J. & Heijs, B. In situ isotope tracing at single-cell resolution using mass spectrometry imaging. Methods Mol. Biol. 2855, 523–535 (2025).

Article 
PubMed 

Google Scholar
 

Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buglakova, E. et al. Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Nat. Metab. 6, 1695–1711 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285–294 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 (2022).

Article 
PubMed 

Google Scholar
 

Tong, L. et al. Patient-derived organoids in precision cancer medicine. Med 5, 1351–1377 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Wahle, P. et al. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41, 1765–1775 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chiaradia, I. et al. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 30, 1351–1367.e10 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Legnini, I. et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat. Methods 20, 1544–1552 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

You, Y. et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21, 1743–1754 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ren, P. et al. Systematic benchmarking of high-throughput subcellular spatial transcriptomics platforms. Preprint at bioRxiv https://doi.org/10.1101/2024.12.23.630033 (2024).

Wang, H. et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570603 (2023).

Kim, Y. et al. Seq-Scope protocol: repurposing illumina sequencing flow cells for high-resolution spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2024.03.29.587285 (2024).

Poovathingal, S. et al. Nova-ST: nano-patterned ultra-dense platform for spatial transcriptomics. Cell Rep. Methods 4, 100831 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972.e26 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Liao, R. et al. Sequencing-based spatial transcriptomics with scRNA-seq sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2025.01.15.633111 (2025).

Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zou, L. S. et al. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol. 25, 180 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, C. et al. Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. Nat. Methods 21, 2239–2247 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, P. et al. Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues. Nat. Methods 22, 520–529 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 24, 295–313 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

[No authors listed] Method of the year 2024: spatial proteomics. Nat. Methods 21, 2195–2196 (2024).

Article 

Google Scholar
 

Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

de Souza, N., Zhao, S. & Bodenmiller, B. Multiplex protein imaging in tumour biology. Nat. Rev. Cancer 24, 171–191 (2024).

Article 
PubMed 

Google Scholar
 

Jhaveri, N. et al. Mapping the spatial proteome of head and neck tumors: key immune mediators and metabolic determinants in the tumor microenvironment. GEN Biotechnol. 2, 418–434 (2023).

Article 
CAS 

Google Scholar
 

Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass. Spectrom. 32, 977–988 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

Article 
PubMed 

Google Scholar
 

Quardokus, E. M. et al. Organ mapping antibody panels: a community resource for standardized multiplexed tissue imaging. Nat. Methods 20, 1174–1178 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, H. et al. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. npj Imaging 2, 20 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alexandrov, T. Spatial metabolomics: from a niche field towards a driver of innovation. Nat. Metab. 5, 1443–1445 (2023).

Article 
PubMed 

Google Scholar
 

Saharuka, V. et al. Large-scale evaluation of spatial metabolomics protocols and technologies. Preprint at bioRxiv https://doi.org/10.1101/2024.01.29.577354 (2024).

Singhal, V. et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431–441 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for studying cell-cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Plummer, J. T., Vlachos, I. S. & Martelotto, L. G. Introducing the global alliance for spatial technologies (GESTALT). Nat. Genet. 57, 275–279 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Lim, J. et al. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet. 24, 573–584 (2023).

Article 
CAS 
PubMed 

Google Scholar
Â