Niu, H. et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 5, e12412 (2023).
Kong, J. The imitation, surpassing, and challenge of artificial perception to natural perception. J. Hum. Cogn. 8, 8–16 (2024).
Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine learning with human knowledge. iScience 23, 101656 (2020).
Li, J. & Carayon, P. Health Care 4.0: a vision for smart and connected health care. IISE Trans. Healthc. Syst. Eng. https://doi.org/10.1080/24725579.2021.1884627 (2021).
Huang, S.-C. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. (2020).
Sakib, S., Fouda, M. M. & Fadlullah, Z. M. A rigorous analysis of biomedical edge computing: an arrhythmia classification use-case leveraging deep learning. In 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS) 136–141 (IEEE, BALI, Indonesia, 2021).
Meuser, T. et al. Revisiting Edge AI: opportunities and challenges. IEEE Internet Comput. 28, 49–59 (2024).
Leng, J. et al. Unlocking the power of industrial artificial intelligence towards Industry 5.0: insights, pathways, and challenges. J. Manuf. Syst. 73, 349–363 (2024).
Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).
Zhang, Z., Wang, L. & Lee, C. Recent advances in artificial intelligence sensors. Adv. Sens. Res. 2, 2200072 (2023).
Wang, H. et al. Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems. J. Semicond. 46, 011610 (2025).
Katmah, R., Shehhi, A. A., Jelinek, H. F., Hulleck, A. A. & Khalaf, K. A systematic review of gait analysis in the context of multimodal sensing fusion and AI. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4189–4202 (2023).
Narkhede, P. et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion. Appl. Syst. Innov. 4, 3 (2021).
Yu, K., Kim, S. & Choi, J. R. Trends and challenges in computing-in-memory for neural network model: a review from device design to application-side optimization. IEEE Access 12, 186679–186702 (2024).
Passian, A. & Imam, N. Nanosystems, edge computing, and the next generation computing systems. Sensors 19, 4048 (2019).
Lee, D. et al. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 (2022).
Lee, H. S. et al. Efficient defect identification via oxide memristive crossbar array based morphological image processing. Adv. Intell. Syst. 3, 2000202 (2021).
Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Rev. 48, 457–476 (2005).
Stein, R. B., Aoyagi, Y., Weber, D. J., Shoham, S. & Normann, R. A. Encoding mechanisms for sensory neurons studied with a multielectrode array in the cat dorsal root ganglion. Can. J. Physiol. Pharmacol. 82, 757–768 (2004).
Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).
Turner, M. H., Sanchez Giraldo, L. G., Schwartz, O. & Rieke, F. Stimulus- and goal-oriented frameworks for understanding natural vision. Nat. Neurosci. 22, 15–24 (2019).
Liu, B., Hong, A., Rieke, F. & Manookin, M. B. Predictive encoding of motion begins in the primate retina. Nat. Neurosci. 24, 1280–1291 (2021).
Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Fabre, W., Haroun, K., Lorrain, V., Lepecq, M. & Sicard, G. From near-sensor to in-sensor: a state-of-the-art review of embedded AI vision systems. Sensors 24, 5446 (2024).
Modak, N. & Roy, K. Energy efficiency through in-sensor computing: ADC-less real-time sensing for image edge detection. In Proc. 29th ACM/IEEE International Symposium on Low Power Electronics and Design 1–6 (ACM, Newport Beach, CA, USA, 2024).
Bae, B. et al. Stereoscopic artificial compound eyes for spatiotemporal perception in three-dimensional space. Sci. Robot. 9, eadl3606 (2024).
Tang, W. et al. Review of bio-inspired image sensors for efficient machine vision. Adv. Photonics. 6, 024001 (2024).
Liu, J. et al. Recent progress in wearable near-sensor and in-sensor intelligent perception systems. Sensors 24, 2180 (2024).
Bae, B., Park, M., Lee, D., Sim, I. & Lee, K. Hetero-integrated InGaAs photodiode and oxide memristor-based artificial optical nerve for in-sensor NIR image processing. Adv. Opt. Mater. https://doi.org/10.1002/adom.202201905 (2022).
Baek, Y. et al. Network of artificial olfactory receptors for spatiotemporal monitoring of toxic gas. Sci. Adv. 10, eadr2659 (2024).
Bae, B. et al. Near-sensor computing-assisted simultaneous viral antigen and antibody detection via integrated biosensors with microfluidics. InfoMat 5, e12471 (2023).
Pinkham, R., Erhardt, J., De Salvo, B., Berkovich, A. & Zhang, Z. ANSA: adaptive near-sensor architecture for dynamic DNN processing in compact form factors. IEEE Trans. Circuits Syst. Regul. Pap. 70, 1256–1269 (2023).
Safa, A., Van Assche, J., Alea, M. D., Catthoor, F. & Gielen, G. G. E. Neuromorphic near-sensor computing: from event-based sensing to edge learning. IEEE Micro 42, 88–95 (2022).
Vitale, A., Donati, E., Germann, R. & Magno, M. Neuromorphic edge computing for biomedical applications: gesture classification using EMG signals. IEEE Sens. J. 22, 19490–19499 (2022).
Baek, Y. et al. Quantized neural network via synaptic segregation based on ternary charge-trap transistors. Adv. Electron. Mater. 9, 2300303 (2023).
Jiang, H. et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2Memristor. Sci. Rep. 6, 1–8 (2016).
Park, M. et al. An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP 2 S 6 /GaN HEMT. Sci. Adv. 9, eadh9889 (2023).
Kim, J. Y., Choi, M.-J. & Jang, H. W. Ferroelectric field effect transistors: Progress and perspective. APL Mater. 9, 021102 (2021).
Agarwal, S. et al. Using floating gate memory to train ideal accuracy neural networks. IEEE J. Explor. Solid State Comput. Devices Circuits 5, 52–57 (2019).
Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).
Lin, N. et al. In-memory and in-sensor reservoir computing with memristive devices. APL Mach. Learn. 2, 010901 (2024).
Liu, J. et al. TFT-based near-sensor in-memory computing: circuits and architecture perspectives of large-area eDRAM and ROM CiM chips. IEEE Trans. Circuits Syst. Regul. Pap. 71, 620–633 (2024).
Diaz-Madrid, J.-A., Domenech-Asensi, G., Ruiz-Merino, R. & Zapata-Perez, J.-F. A real-time and energy-efficient SRAM with mixed-signal in-memory computing near CMOS sensors. J. Real-Time Image Process. 21, 143 (2024).
Zhang, Y. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).
He, W. et al. Customized binary and multi-level HfO2−x-based memristors tuned by oxidation conditions. Sci. Rep. 7, 10070 (2017).
Liang, K.-D. et al. Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537–16544 (2014).
Z. Fan, X. Fan, Li, A. & Dong, L. Resistive switching in copper oxide nanowire-based memristor. In 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO) 1–4 (IEEE, Birmingham, United Kingdom, 2012).
Yang, J. J. et al. Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102, 785–789 (2011).
Illarionov, G. A., Morozova, S. M., Chrishtop, V. V., Einarsrud, M.-A. & Morozov, M. I. Memristive TiO2: synthesis, technologies, and applications. Front. Chem. 8, 724 (2020).
Jang, J. et al. A learning-rate modulable and reliable TiOx memristor array for robust, fast, and accurate neuromorphic computing. Adv. Sci. 9, 2201117 (2022).
Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011).
Wang, Z. et al. Engineering incremental resistive switching in TaO: Xbased memristors for brain-inspired computing. Nanoscale 8, 14015–14022 (2016).
Naqi, M. et al. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. Npj 2D Mater. Appl. 6, 53 (2022).
Dev, D. et al. 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41, 936–939 (2020).
Zhang, W. et al. An ultrathin memristor based on a two-dimensional WS2 /MoS2 heterojunction. Nanoscale 13, 11497–11504 (2021).
Zhou, G. et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).
Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).
Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).
Bae, J. et al. Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems. Sci. Adv. 10, eadm7221 (2024).
Cho, H. et al. Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6, 619–629 (2023).
Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).
Zhang, X. et al. An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11, 51 (2020).
Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).
Wang, R. et al. Recent advances of volatile memristors: devices, mechanisms, and applications. Adv. Intell. Syst. 2, 2000055 (2020).
Kurt, O., Le, T., Sahu, S. K., Randall, C. A. & Ren, Y. Assessment of strain relaxation and oxygen vacancy migration near grain boundary in SrTiO3 bicrystals by second harmonic generation. J. Phys. Chem. C. 124, 11892–11901 (2020).
Xi, J. Strain effects on oxygen vacancy energetics in KTaO3. Phys. Chem. Chem. Phys. https://doi.org/10.1039/c6cp08315c (2017).
Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).
Bae, B., Park, M., Lee, D., Sim, I. & Lee, K. Hetero-integrated InGaAs photodiode and oxide memristor-based artificial optical nerve for in-sensor NIR image processing. Adv. Opt. Mater. 11, 2201905 (2023).
Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 1–10 (2017).
Park, S.-O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).
Camuñas-Mesa, L., Linares-Barranco, B. & Serrano-Gotarredona, T. Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials 12, 2745 (2019).
Wu, X., Dang, B., Zhang, T., Wu, X. & Yang, Y. Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons. Sci. Adv. 10, eadl2767 (2024).
Reis, D., Niemier, M. & Hu, X. S. Computing in memory with FeFETs. In Proceedings of the International Symposium on Low Power Electronics and Design 1–6 (ACM, Seattle WA USA, 2018).
Ryu, H. et al. Low-thermal-budget ferroelectric field-effect transistors based on CuInP2 S6 and InZnO. ACS Appl. Mater. Interfaces 15, 53671–53677 (2023).
Yang, J. Y. et al. Reconfigurable physical reservoir in GaN/α-In2Se3 HEMTs enabled by out-of-plane local polarization of ferroelectric 2D layer. ACS Nano 17, 7695–7704 (2023).
Yang, J. Y. et al. Pulsed E-/D-mode switchable GaN HEMTs with a ferroelectric AlScN gate dielectric. IEEE Electron Device Lett. 44, 1260–1263 (2023).
Mondal, S. et al. ScAlN-based ITO channel ferroelectric field-effect transistors with large memory window. IEEE Trans. Electron Devices 70, 4618–4621 (2023).
Li, Q. et al. High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15, 2686 (2024).
Yang, J. Y. et al. Reconfigurable radio-frequency high-electron mobility transistors via ferroelectric-based gallium nitride heterostructure. Adv. Electron. Mater. 8, 2101406 (2022).
Xiao, W. et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res. Lett. 14, 254 (2019).
Milloch, A., Fabrizio, M. & Giannetti, C. Mott materials: unsuccessful metals with a bright future. Npj Spintron. 2, 49 (2024).
Shukla, N. et al. A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015).
Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Computing with dynamical systems based on insulator-metal-transition oscillators. Nanophotonics 6, 601–611 (2017).
Wang, X. et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 6, 1901050 (2019).
Wu, G. et al. Visible to short wavelength infrared In2 Se3-nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology 27, 364002 (2016).
Chen, Y. et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl. Mater. Interfaces 8, 32083–32088 (2016).
Liao, C.-S., Ding, Y.-F., Zhao, Y.-Q. & Cai, M.-Q. Band alignment engineering of a Ruddlesden–Popper perovskite-based heterostructure constructed using Cs2SnI2Cl2 and α-In2Se3: The effects of ferroelectric polarization switching and electric fields. Appl. Phys. Lett. 119, 182903 (2021).
Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2023).
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015).
Kim, W. et al. Electrochemiluminescent tactile visual synapse enabling in situ health monitoring. Nat. Mater. https://doi.org/10.1038/s41563-025-02124-x (2025).
Lee, Y. R., Trung, T. Q., Hwang, B.-U. & Lee, N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).
Lee, K. et al. Artificially intelligent tactile ferroelectric skin. Adv. Sci. 7, 2001662 (2020).
Wu, X. et al. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 14, 468 (2023).
Yin, Y. et al. In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9, 4277–4285 (2024).
Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).
Keene, S. T. et al. Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22, 1121–1127 (2023).
Moro, S. et al. The effect of glycol side chains on the assembly and microstructure of conjugated polymers. ACS Nano 16, 21303–21314 (2022).
Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).
Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).
Chouhdry, H. H., Lee, D. H., Bag, A. & Lee, N.-E. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023).
Sun, B. et al. ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horiz. 6, 939–970 (2021).
Nasiri, N., Jin, D. & Tricoli, A. Nanoarchitechtonics of visible-blind ultraviolet photodetector materials: critical features and nano-microfabrication. Adv. Opt. Mater. 7, 1800580 (2019).
Li, G. et al. Interface-engineered non-volatile visible-blind photodetector for in-sensor computing. Nat. Commun. 16, 57 (2025).
Cui, B. et al. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nat. Commun. 13, 1707 (2022).
Vasilopoulou, M. et al. Neuromorphic computing based on halide perovskites. Nat. Electron. 6, 949–962 (2023).
He, Z. et al. Perovskite retinomorphic image sensor for embodied intelligent vision. Sci. Adv. 11, eads2834 (2025).
Li, M.-Z. et al. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces 13, 30861–30873 (2021).
Sharma, D. et al. Halide perovskite photovoltaics for in-sensor reservoir computing. Nano Energy 129, 109949 (2024).
Zhou, X. et al. All-photonic artificial synapses based on photochromic perovskites for noncontact neuromorphic visual perception. Commun. Mater. 5, 116 (2024).
Chen, Q. et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. 2, 2000122 (2020).
Shao, H. et al. A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing. Adv. Mater. 35, 2208497 (2023).
Zhang, X. et al. Halide perovskite memristors for optoelectronic memory and computing applications. Inf. Funct. Mater. 1, 265–281 (2024).
Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Wang, Y. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).
Ghosh, S. et al. An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior. Nat. Commun. 14, 6021 (2023).
Shi, Y., Duong, N. T. & Ang, K.-W. Emerging 2D materials hardware for in-sensor computing. Nanoscale Horiz. 10, 205–229 (2025).
Qi, M. et al. An in-sensor humidity computing system for contactless human–computer interaction. Mater. Horiz. 11, 939–948 (2024).
Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).
Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2022).
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).
Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).
Das, B. et al. Artificial visual systems fabricated with ferroelectric van der Waals heterostructure for in-memory computing applications. ACS Nano 17, 21297–21306 (2023).
Moon, D. et al. Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides. Nature 638, 957–964 (2025).
Chu, Q.-Q. et al. Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6, 3838–3863 (2023).
Wu, E. et al. A CMOS-compatible fabrication approach for high-performance perovskite photodetector arrays. Adv. Opt. Mater. 13, 2402979 (2025).
Duff, I. S. & Stewart, G. W. Sparse Matrix Proceedings, 1978 (SIAM, 1979).
Chen, T. et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. SIGARCH Comput Arch. News 42, 269–284 (2014).
Chen, Y.-H., Emer, J. & Sze, V. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. SIGARCH Comput Arch. News 44, 367–379 (2016).
Ali, M. et al. IMAC: In-Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array. IEEE Trans. Circuits Syst. Regul. Pap. 67, 2521–2531 (2020).
Zhang, J., Wang, Z. & Verma, N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid State Circuits 52, 915–924 (2017).
Fujiwara, H. et al. 34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 fully-digital compute-in-memory macro supporting INT12 × INT12 with a parallel-MAC architecture and foundry 6T-SRAM Bit Cell. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) vol. 67 572–574 (2024).
Yin, G. et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs. IEEE Trans. Circuits Syst. II Express Briefs 68, 2262–2266 (IEEE, 2021).
Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).
Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).
Xue, C.-X. et al. 15.4 A 22nm 2Mb ReRAM compute-in-memory macro with 121-28TOPS/W for multibit MAC computing for tiny AI edge devices. In 2020 IEEE International Solid-State Circuits Conference – (ISSCC) 244–246 https://doi.org/10.1109/ISSCC19947.2020.9063078 (2020).
Jin, C. et al. A multi-bit CAM design with ultra-high density and energy efficiency based on FeFET NAND. IEEE Electron Device Lett. 44, 1104–1107 (2023).
Jaiswal, A., Roy, S., Srinivasan, G. & Roy, K. Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets. IEEE Trans. Electron Devices 64, 1818–1824 (2017).
Dutta, S., Kumar, V., Shukla, A., Mohapatra, N. R. & Ganguly, U. Leaky integrate and fire neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7, 8257 (2017).
Krestinskaya, O., James, A. P. & Chua, L. O. Neuromemristive circuits for edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2020).
Sonnadara, C. & Shah, S. Real-time analog processing with on-chip learning using multiple-input translinear elements. npj Unconv Comp. 2, 11 (2025).
Sonnadara, C. & Shah, S. On-chip adaptation for reducing mismatch in analog non-volatile device based neural networks. In 2024 IEEE International Symposium on Circuits and Systems (ISCAS) 1–5. https://doi.org/10.1109/ISCAS58744.2024.10557839 (2024).
Gokmen, T. Enabling training of neural networks on noisy hardware. Front. Artif. Intell. 4, 699148 (2021).
Long, Y. et al. A ferroelectric FET-based processing-in-memory architecture for DNN acceleration. IEEE J. Explor. Solid State Comput. Devices Circuits 5, 113–122 (2019).
Park, M. et al. Remote epitaxy and freestanding wide bandgap semiconductor membrane technology. Nat. Rev. Electr. Eng. 1, 680–689 (2024).
Liu, Y., Fan, R., Guo, J., Ni, H. & Bhutta, M. U. M. In-sensor visual perception and inference. Intell. Comput. 2, 0043 (2023).
Lee, S., Peng, R., Wu, C. & Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).
Shao, H. et al. Adaptive in-sensor computing for enhanced feature perception and broadband image restoration. Adv. Mater. 37, 2414261 (2025).
Nair, G. R. et al. 3-D in-sensor computing for real-time DVS data compression: 65-nm hardware-algorithm co-design. IEEE Solid State Circuits Lett. 7, 119–122 (2024).
Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).
Cao, Z. et al. A programmable electronic skin with event-driven in-sensor touch differential and decision-making. Adv. Funct. Mater. 35, 2412649 (2025).
Li, K. et al. Thin-film event-based vision sensors for enhanced multispectral perception beyond human vision. InfoMat https://doi.org/10.1002/inf2.70007 (2025).
Candes, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).
Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).
Martinez, J. A., Ruiz, P. M. & Skarmeta, A. F. Evaluation of the use of compressed sensing in data harvesting for vehicular sensor networks. Sensors 20, 1434 (2020).
Xue, Y., Lau, V. & Cai, S. Efficient sparse coding using hierarchical Riemannian pursuit. IEEE Trans. Signal Process. 69, 4069–4084 (2021).
Jacob, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2704–2713 (IEEE, Salt Lake City, UT, 2018).
Gholami, A. et al. A survey of quantization methods for efficient neural network inference. In Low-Power Computer Vision (Chapman and Hall/CRC, 2022).
Nagel, M. et al. A white paper on neural network quantization. Preprint at https://doi.org/10.48550/arXiv.2106.08295 (2021).
McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. y. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 1273–1282 (PMLR, 2017).
Shen, C., Yang, J. & Xu, J. On federated learning with energy harvesting clients. In ICASSP 2022 – 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8657–8661 (2022).
Mu, Y. & Shen, C. Communication and storage efficient federated split learning. In ICC 2023 – IEEE International Conference on Communications 2976–2981 https://doi.org/10.1109/ICC45041.2023.10278891 (2023).
Wang, J. et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing. IEEE J. Solid State Circuits 55, 76–86 (2020).
Song, W. et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science 383, 903–910 (2024).
Wang, J. et al. Drift-aware feature learning based on autoencoder preprocessing for soft sensors. Adv. Intell. Syst 6, 2300486 (2024).
Eldebiky, A., Zhang, G. L., Boecherer, G., Li, B. & Schlichtmann, U. CorrectNet: robustness enhancement of analog in-memory computing for neural networks by error suppression and compensation. 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6 (2023).
Xiao, Z. et al. Multimodal in-sensor computing system using integrated silicon photonic convolutional processor. Adv. Sci. 11, 2408597 (2024).
Jiang, C. et al. 60 nm Pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic tactile sensor for in-chip computing. Nano Energy 87, 106190 (2021).
Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. https://doi.org/10.1038/s41928-021-00585-x (2021).
Otseidu, K., Jia, T., Bryne, J., Hargrove, L. & Gu, J. Design and optimization of edge computing distributed neural processor for biomedical rehabilitation with sensor fusion. In Proc. International Conference on Computer-Aided Design 1–8 (ACM, San Diego, CA, 2018).
Liu, X. et al. Near-sensor reservoir computing for gait recognition via a multi-gate electrolyte-gated transistor. Adv. Sci. 10, 2300471 (2023).
Yang, H. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022).
Ma, S. et al. Bioinspired in-sensor multimodal fusion for enhanced spatial and spatiotemporal association. Nano Lett. 24, 7091–7099 (2024).
Liang, X. et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 13, 1549 (2022).
Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).
Chen, S. et al. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot. Nat. Commun. 15, 7056 (2024).
Zhang, C. et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019).
Rehman, S., Khan, M. F., Kim, H.-D. & Kim, S. Analog–digital hybrid computing with SnS2 memtransistor for low-powered sensor fusion. Nat. Commun. 13, 2804 (2022).
Moosmann, J. et al. Ultra-efficient on-device object detection on AI-integrated smart glasses with TinyissimoYOLO. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 262–280 (2024).
Lee, S.-W. et al. An artificial olfactory sensory neuron for selective gas detection with in-sensor computing. Device 1, 100063 (2023).
Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).
Kapoor, R., Anastasiu, D. C. & Choi, S. ML-NIC: accelerating machine learning inference using smart network interface cards. Front. Comput. Sci. 6, 1493399 (2025).
Du, Y. et al. Monolithic 3D integration of analog RRAM-based computing-in-memory and sensor for energy-efficient near-sensor computing. Adv. Mater. 36, 2302658 (2024).
Valenzuela, W., Saavedra, A., Zarkesh-Ha, P. & Figueroa, M. Motion-based object location on a smart image sensor using on-pixel memory. Sensors 22, 6538 (2022).
Ma, S. et al. BitNet b1.58 2B4T technical report. Preprint at https://doi.org/10.48550/arXiv.2504.12285 (2025).
Kandala, S. V., Medaranga, P. & Varshney, A. TinyLLM: A framework for training and deploying language models at the edge computers. Preprint at https://doi.org/10.48550/arXiv.2412.15304 (2024).
Shen, X. et al. HotaQ: hardware oriented token adaptive quantization for large language models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. https://doi.org/10.1109/TCAD.2024.3487781 (2024).
Zheng, Y. et al. A review on edge large language models: design, execution, and applications. ACM Comput Surv 57, 209:1–209:35 (2025).
Cai, F., Yuan, D., Yang, Z. & Cui, L. Edge-LLM: A collaborative framework for large language model serving in edge computing. In 2024 IEEE International Conference on Web Services (ICWS) 799–809 https://doi.org/10.1109/ICWS62655.2024.00099 (2024).