Niu, H. et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 5, e12412 (2023).

Article 
CAS 

Google Scholar
 

Kong, J. The imitation, surpassing, and challenge of artificial perception to natural perception. J. Hum. Cogn. 8, 8–16 (2024).

Article 

Google Scholar
 

Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine learning with human knowledge. iScience 23, 101656 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. & Carayon, P. Health Care 4.0: a vision for smart and connected health care. IISE Trans. Healthc. Syst. Eng. https://doi.org/10.1080/24725579.2021.1884627 (2021).

Huang, S.-C. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. (2020).

Sakib, S., Fouda, M. M. & Fadlullah, Z. M. A rigorous analysis of biomedical edge computing: an arrhythmia classification use-case leveraging deep learning. In 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS) 136–141 (IEEE, BALI, Indonesia, 2021).

Meuser, T. et al. Revisiting Edge AI: opportunities and challenges. IEEE Internet Comput. 28, 49–59 (2024).

Article 

Google Scholar
 

Leng, J. et al. Unlocking the power of industrial artificial intelligence towards Industry 5.0: insights, pathways, and challenges. J. Manuf. Syst. 73, 349–363 (2024).

Article 

Google Scholar
 

Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, Z., Wang, L. & Lee, C. Recent advances in artificial intelligence sensors. Adv. Sens. Res. 2, 2200072 (2023).

Article 

Google Scholar
 

Wang, H. et al. Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems. J. Semicond. 46, 011610 (2025).

Article 
ADS 

Google Scholar
 

Katmah, R., Shehhi, A. A., Jelinek, H. F., Hulleck, A. A. & Khalaf, K. A systematic review of gait analysis in the context of multimodal sensing fusion and AI. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4189–4202 (2023).

Article 
PubMed 

Google Scholar
 

Narkhede, P. et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion. Appl. Syst. Innov. 4, 3 (2021).

Article 

Google Scholar
 

Yu, K., Kim, S. & Choi, J. R. Trends and challenges in computing-in-memory for neural network model: a review from device design to application-side optimization. IEEE Access 12, 186679–186702 (2024).

Article 

Google Scholar
 

Passian, A. & Imam, N. Nanosystems, edge computing, and the next generation computing systems. Sensors 19, 4048 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, D. et al. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, H. S. et al. Efficient defect identification via oxide memristive crossbar array based morphological image processing. Adv. Intell. Syst. 3, 2000202 (2021).

Article 

Google Scholar
 

Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Rev. 48, 457–476 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Stein, R. B., Aoyagi, Y., Weber, D. J., Shoham, S. & Normann, R. A. Encoding mechanisms for sensory neurons studied with a multielectrode array in the cat dorsal root ganglion. Can. J. Physiol. Pharmacol. 82, 757–768 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Turner, M. H., Sanchez Giraldo, L. G., Schwartz, O. & Rieke, F. Stimulus- and goal-oriented frameworks for understanding natural vision. Nat. Neurosci. 22, 15–24 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, B., Hong, A., Rieke, F. & Manookin, M. B. Predictive encoding of motion begins in the primate retina. Nat. Neurosci. 24, 1280–1291 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

Article 

Google Scholar
 

Fabre, W., Haroun, K., Lorrain, V., Lepecq, M. & Sicard, G. From near-sensor to in-sensor: a state-of-the-art review of embedded AI vision systems. Sensors 24, 5446 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Modak, N. & Roy, K. Energy efficiency through in-sensor computing: ADC-less real-time sensing for image edge detection. In Proc. 29th ACM/IEEE International Symposium on Low Power Electronics and Design 1–6 (ACM, Newport Beach, CA, USA, 2024).

Bae, B. et al. Stereoscopic artificial compound eyes for spatiotemporal perception in three-dimensional space. Sci. Robot. 9, eadl3606 (2024).

Article 
PubMed 

Google Scholar
 

Tang, W. et al. Review of bio-inspired image sensors for efficient machine vision. Adv. Photonics. 6, 024001 (2024).

Liu, J. et al. Recent progress in wearable near-sensor and in-sensor intelligent perception systems. Sensors 24, 2180 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bae, B., Park, M., Lee, D., Sim, I. & Lee, K. Hetero-integrated InGaAs photodiode and oxide memristor-based artificial optical nerve for in-sensor NIR image processing. Adv. Opt. Mater. https://doi.org/10.1002/adom.202201905 (2022).

Baek, Y. et al. Network of artificial olfactory receptors for spatiotemporal monitoring of toxic gas. Sci. Adv. 10, eadr2659 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bae, B. et al. Near-sensor computing-assisted simultaneous viral antigen and antibody detection via integrated biosensors with microfluidics. InfoMat 5, e12471 (2023).

Article 
CAS 

Google Scholar
 

Pinkham, R., Erhardt, J., De Salvo, B., Berkovich, A. & Zhang, Z. ANSA: adaptive near-sensor architecture for dynamic DNN processing in compact form factors. IEEE Trans. Circuits Syst. Regul. Pap. 70, 1256–1269 (2023).

Article 

Google Scholar
 

Safa, A., Van Assche, J., Alea, M. D., Catthoor, F. & Gielen, G. G. E. Neuromorphic near-sensor computing: from event-based sensing to edge learning. IEEE Micro 42, 88–95 (2022).

Article 

Google Scholar
 

Vitale, A., Donati, E., Germann, R. & Magno, M. Neuromorphic edge computing for biomedical applications: gesture classification using EMG signals. IEEE Sens. J. 22, 19490–19499 (2022).

Article 
ADS 

Google Scholar
 

Baek, Y. et al. Quantized neural network via synaptic segregation based on ternary charge-trap transistors. Adv. Electron. Mater. 9, 2300303 (2023).

Article 
CAS 

Google Scholar
 

Jiang, H. et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2Memristor. Sci. Rep. 6, 1–8 (2016).


Google Scholar
 

Park, M. et al. An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP 2 S 6 /GaN HEMT. Sci. Adv. 9, eadh9889 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, J. Y., Choi, M.-J. & Jang, H. W. Ferroelectric field effect transistors: Progress and perspective. APL Mater. 9, 021102 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Agarwal, S. et al. Using floating gate memory to train ideal accuracy neural networks. IEEE J. Explor. Solid State Comput. Devices Circuits 5, 52–57 (2019).

Article 
ADS 

Google Scholar
 

Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).

Article 

Google Scholar
 

Lin, N. et al. In-memory and in-sensor reservoir computing with memristive devices. APL Mach. Learn. 2, 010901 (2024).

Article 
CAS 

Google Scholar
 

Liu, J. et al. TFT-based near-sensor in-memory computing: circuits and architecture perspectives of large-area eDRAM and ROM CiM chips. IEEE Trans. Circuits Syst. Regul. Pap. 71, 620–633 (2024).

Article 

Google Scholar
 

Diaz-Madrid, J.-A., Domenech-Asensi, G., Ruiz-Merino, R. & Zapata-Perez, J.-F. A real-time and energy-efficient SRAM with mixed-signal in-memory computing near CMOS sensors. J. Real-Time Image Process. 21, 143 (2024).

Article 

Google Scholar
 

Zhang, Y. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, W. et al. Customized binary and multi-level HfO2−x-based memristors tuned by oxidation conditions. Sci. Rep. 7, 10070 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liang, K.-D. et al. Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537–16544 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Z. Fan, X. Fan, Li, A. & Dong, L. Resistive switching in copper oxide nanowire-based memristor. In 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO) 1–4 (IEEE, Birmingham, United Kingdom, 2012).

Yang, J. J. et al. Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102, 785–789 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Illarionov, G. A., Morozova, S. M., Chrishtop, V. V., Einarsrud, M.-A. & Morozov, M. I. Memristive TiO2: synthesis, technologies, and applications. Front. Chem. 8, 724 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jang, J. et al. A learning-rate modulable and reliable TiOx memristor array for robust, fast, and accurate neuromorphic computing. Adv. Sci. 9, 2201117 (2022).

Article 
CAS 

Google Scholar
 

Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, Z. et al. Engineering incremental resistive switching in TaO: Xbased memristors for brain-inspired computing. Nanoscale 8, 14015–14022 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Naqi, M. et al. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. Npj 2D Mater. Appl. 6, 53 (2022).

Article 
CAS 

Google Scholar
 

Dev, D. et al. 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41, 936–939 (2020).

Article 
ADS 

Google Scholar
 

Zhang, W. et al. An ultrathin memristor based on a two-dimensional WS2 /MoS2 heterojunction. Nanoscale 13, 11497–11504 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhou, G. et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).

Article 
CAS 

Google Scholar
 

Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bae, J. et al. Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems. Sci. Adv. 10, eadm7221 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cho, H. et al. Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6, 619–629 (2023).

Article 

Google Scholar
 

Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, X. et al. An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11, 51 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

Article 

Google Scholar
 

Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, R. et al. Recent advances of volatile memristors: devices, mechanisms, and applications. Adv. Intell. Syst. 2, 2000055 (2020).

Article 

Google Scholar
 

Kurt, O., Le, T., Sahu, S. K., Randall, C. A. & Ren, Y. Assessment of strain relaxation and oxygen vacancy migration near grain boundary in SrTiO3 bicrystals by second harmonic generation. J. Phys. Chem. C. 124, 11892–11901 (2020).

Xi, J. Strain effects on oxygen vacancy energetics in KTaO3. Phys. Chem. Chem. Phys. https://doi.org/10.1039/c6cp08315c (2017).

Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

Article 
ADS 

Google Scholar
 

Bae, B., Park, M., Lee, D., Sim, I. & Lee, K. Hetero-integrated InGaAs photodiode and oxide memristor-based artificial optical nerve for in-sensor NIR image processing. Adv. Opt. Mater. 11, 2201905 (2023).

Article 
CAS 

Google Scholar
 

Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 1–10 (2017).

Article 
ADS 

Google Scholar
 

Park, S.-O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camuñas-Mesa, L., Linares-Barranco, B. & Serrano-Gotarredona, T. Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials 12, 2745 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, X., Dang, B., Zhang, T., Wu, X. & Yang, Y. Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons. Sci. Adv. 10, eadl2767 (2024).

Article 
ADS 
CAS 
PubMed Central 

Google Scholar
 

Reis, D., Niemier, M. & Hu, X. S. Computing in memory with FeFETs. In Proceedings of the International Symposium on Low Power Electronics and Design 1–6 (ACM, Seattle WA USA, 2018).

Ryu, H. et al. Low-thermal-budget ferroelectric field-effect transistors based on CuInP2 S6 and InZnO. ACS Appl. Mater. Interfaces 15, 53671–53677 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Yang, J. Y. et al. Reconfigurable physical reservoir in GaN/α-In2Se3 HEMTs enabled by out-of-plane local polarization of ferroelectric 2D layer. ACS Nano 17, 7695–7704 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Yang, J. Y. et al. Pulsed E-/D-mode switchable GaN HEMTs with a ferroelectric AlScN gate dielectric. IEEE Electron Device Lett. 44, 1260–1263 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Mondal, S. et al. ScAlN-based ITO channel ferroelectric field-effect transistors with large memory window. IEEE Trans. Electron Devices 70, 4618–4621 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Li, Q. et al. High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15, 2686 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, J. Y. et al. Reconfigurable radio-frequency high-electron mobility transistors via ferroelectric-based gallium nitride heterostructure. Adv. Electron. Mater. 8, 2101406 (2022).

Article 
CAS 

Google Scholar
 

Xiao, W. et al. Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res. Lett. 14, 254 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Milloch, A., Fabrizio, M. & Giannetti, C. Mott materials: unsuccessful metals with a bright future. Npj Spintron. 2, 49 (2024).

Article 

Google Scholar
 

Shukla, N. et al. A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Computing with dynamical systems based on insulator-metal-transition oscillators. Nanophotonics 6, 601–611 (2017).

Article 
CAS 

Google Scholar
 

Wang, X. et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 6, 1901050 (2019).

Article 

Google Scholar
 

Wu, G. et al. Visible to short wavelength infrared In2 Se3-nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology 27, 364002 (2016).

Article 
PubMed 

Google Scholar
 

Chen, Y. et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl. Mater. Interfaces 8, 32083–32088 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Liao, C.-S., Ding, Y.-F., Zhao, Y.-Q. & Cai, M.-Q. Band alignment engineering of a Ruddlesden–Popper perovskite-based heterostructure constructed using Cs2SnI2Cl2 and α-In2Se3: The effects of ferroelectric polarization switching and electric fields. Appl. Phys. Lett. 119, 182903 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2023).

Article 
ADS 

Google Scholar
 

Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015).

Article 
ADS 

Google Scholar
 

Kim, W. et al. Electrochemiluminescent tactile visual synapse enabling in situ health monitoring. Nat. Mater. https://doi.org/10.1038/s41563-025-02124-x (2025).

Lee, Y. R., Trung, T. Q., Hwang, B.-U. & Lee, N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, K. et al. Artificially intelligent tactile ferroelectric skin. Adv. Sci. 7, 2001662 (2020).

Article 
CAS 

Google Scholar
 

Wu, X. et al. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 14, 468 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yin, Y. et al. In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9, 4277–4285 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Keene, S. T. et al. Hole-limited electrochemical doping in conjugated polymers. Nat. Mater. 22, 1121–1127 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moro, S. et al. The effect of glycol side chains on the assembly and microstructure of conjugated polymers. ACS Nano 16, 21303–21314 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).

Article 

Google Scholar
 

Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

Article 
CAS 

Google Scholar
 

Chouhdry, H. H., Lee, D. H., Bag, A. & Lee, N.-E. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, B. et al. ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horiz. 6, 939–970 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nasiri, N., Jin, D. & Tricoli, A. Nanoarchitechtonics of visible-blind ultraviolet photodetector materials: critical features and nano-microfabrication. Adv. Opt. Mater. 7, 1800580 (2019).

Article 

Google Scholar
 

Li, G. et al. Interface-engineered non-volatile visible-blind photodetector for in-sensor computing. Nat. Commun. 16, 57 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Cui, B. et al. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nat. Commun. 13, 1707 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vasilopoulou, M. et al. Neuromorphic computing based on halide perovskites. Nat. Electron. 6, 949–962 (2023).

Article 
CAS 

Google Scholar
 

He, Z. et al. Perovskite retinomorphic image sensor for embodied intelligent vision. Sci. Adv. 11, eads2834 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, M.-Z. et al. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces 13, 30861–30873 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sharma, D. et al. Halide perovskite photovoltaics for in-sensor reservoir computing. Nano Energy 129, 109949 (2024).

Article 
CAS 

Google Scholar
 

Zhou, X. et al. All-photonic artificial synapses based on photochromic perovskites for noncontact neuromorphic visual perception. Commun. Mater. 5, 116 (2024).

Article 
CAS 

Google Scholar
 

Chen, Q. et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. 2, 2000122 (2020).

Article 

Google Scholar
 

Shao, H. et al. A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing. Adv. Mater. 35, 2208497 (2023).

Article 
CAS 

Google Scholar
 

Zhang, X. et al. Halide perovskite memristors for optoelectronic memory and computing applications. Inf. Funct. Mater. 1, 265–281 (2024).


Google Scholar
 

Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, Y. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).

Article 
CAS 

Google Scholar
 

Ghosh, S. et al. An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior. Nat. Commun. 14, 6021 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi, Y., Duong, N. T. & Ang, K.-W. Emerging 2D materials hardware for in-sensor computing. Nanoscale Horiz. 10, 205–229 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Qi, M. et al. An in-sensor humidity computing system for contactless human–computer interaction. Mater. Horiz. 11, 939–948 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2022).

Article 
ADS 

Google Scholar
 

Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

Article 

Google Scholar
 

Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Das, B. et al. Artificial visual systems fabricated with ferroelectric van der Waals heterostructure for in-memory computing applications. ACS Nano 17, 21297–21306 (2023).

Article 
PubMed 

Google Scholar
 

Moon, D. et al. Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides. Nature 638, 957–964 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chu, Q.-Q. et al. Encapsulation: the path to commercialization of stable perovskite solar cells. Matter 6, 3838–3863 (2023).

Article 
CAS 

Google Scholar
 

Wu, E. et al. A CMOS-compatible fabrication approach for high-performance perovskite photodetector arrays. Adv. Opt. Mater. 13, 2402979 (2025).

Article 
CAS 

Google Scholar
 

Duff, I. S. & Stewart, G. W. Sparse Matrix Proceedings, 1978 (SIAM, 1979).

Chen, T. et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. SIGARCH Comput Arch. News 42, 269–284 (2014).

Article 

Google Scholar
 

Chen, Y.-H., Emer, J. & Sze, V. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. SIGARCH Comput Arch. News 44, 367–379 (2016).

Article 

Google Scholar
 

Ali, M. et al. IMAC: In-Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array. IEEE Trans. Circuits Syst. Regul. Pap. 67, 2521–2531 (2020).

Article 

Google Scholar
 

Zhang, J., Wang, Z. & Verma, N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid State Circuits 52, 915–924 (2017).

Article 
ADS 

Google Scholar
 

Fujiwara, H. et al. 34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 fully-digital compute-in-memory macro supporting INT12 × INT12 with a parallel-MAC architecture and foundry 6T-SRAM Bit Cell. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) vol. 67 572–574 (2024).

Yin, G. et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs. IEEE Trans. Circuits Syst. II Express Briefs 68, 2262–2266 (IEEE, 2021).

Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Xue, C.-X. et al. 15.4 A 22nm 2Mb ReRAM compute-in-memory macro with 121-28TOPS/W for multibit MAC computing for tiny AI edge devices. In 2020 IEEE International Solid-State Circuits Conference – (ISSCC) 244–246 https://doi.org/10.1109/ISSCC19947.2020.9063078 (2020).

Jin, C. et al. A multi-bit CAM design with ultra-high density and energy efficiency based on FeFET NAND. IEEE Electron Device Lett. 44, 1104–1107 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Jaiswal, A., Roy, S., Srinivasan, G. & Roy, K. Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets. IEEE Trans. Electron Devices 64, 1818–1824 (2017).

Article 
ADS 

Google Scholar
 

Dutta, S., Kumar, V., Shukla, A., Mohapatra, N. R. & Ganguly, U. Leaky integrate and fire neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7, 8257 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Krestinskaya, O., James, A. P. & Chua, L. O. Neuromemristive circuits for edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2020).

Article 
MathSciNet 
PubMed 

Google Scholar
 

Sonnadara, C. & Shah, S. Real-time analog processing with on-chip learning using multiple-input translinear elements. npj Unconv Comp. 2, 11 (2025).

Sonnadara, C. & Shah, S. On-chip adaptation for reducing mismatch in analog non-volatile device based neural networks. In 2024 IEEE International Symposium on Circuits and Systems (ISCAS) 1–5. https://doi.org/10.1109/ISCAS58744.2024.10557839 (2024).

Gokmen, T. Enabling training of neural networks on noisy hardware. Front. Artif. Intell. 4, 699148 (2021).

Long, Y. et al. A ferroelectric FET-based processing-in-memory architecture for DNN acceleration. IEEE J. Explor. Solid State Comput. Devices Circuits 5, 113–122 (2019).

Article 
ADS 

Google Scholar
 

Park, M. et al. Remote epitaxy and freestanding wide bandgap semiconductor membrane technology. Nat. Rev. Electr. Eng. 1, 680–689 (2024).

Article 

Google Scholar
 

Liu, Y., Fan, R., Guo, J., Ni, H. & Bhutta, M. U. M. In-sensor visual perception and inference. Intell. Comput. 2, 0043 (2023).

Article 

Google Scholar
 

Lee, S., Peng, R., Wu, C. & Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shao, H. et al. Adaptive in-sensor computing for enhanced feature perception and broadband image restoration. Adv. Mater. 37, 2414261 (2025).

Article 
CAS 

Google Scholar
 

Nair, G. R. et al. 3-D in-sensor computing for real-time DVS data compression: 65-nm hardware-algorithm co-design. IEEE Solid State Circuits Lett. 7, 119–122 (2024).

Article 

Google Scholar
 

Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Cao, Z. et al. A programmable electronic skin with event-driven in-sensor touch differential and decision-making. Adv. Funct. Mater. 35, 2412649 (2025).

Article 
CAS 

Google Scholar
 

Li, K. et al. Thin-film event-based vision sensors for enhanced multispectral perception beyond human vision. InfoMat https://doi.org/10.1002/inf2.70007 (2025).

Candes, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Martinez, J. A., Ruiz, P. M. & Skarmeta, A. F. Evaluation of the use of compressed sensing in data harvesting for vehicular sensor networks. Sensors 20, 1434 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Xue, Y., Lau, V. & Cai, S. Efficient sparse coding using hierarchical Riemannian pursuit. IEEE Trans. Signal Process. 69, 4069–4084 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Jacob, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2704–2713 (IEEE, Salt Lake City, UT, 2018).

Gholami, A. et al. A survey of quantization methods for efficient neural network inference. In Low-Power Computer Vision (Chapman and Hall/CRC, 2022).

Nagel, M. et al. A white paper on neural network quantization. Preprint at https://doi.org/10.48550/arXiv.2106.08295 (2021).

McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. y. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 1273–1282 (PMLR, 2017).

Shen, C., Yang, J. & Xu, J. On federated learning with energy harvesting clients. In ICASSP 2022 – 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8657–8661 (2022).

Mu, Y. & Shen, C. Communication and storage efficient federated split learning. In ICC 2023 – IEEE International Conference on Communications 2976–2981 https://doi.org/10.1109/ICC45041.2023.10278891 (2023).

Wang, J. et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing. IEEE J. Solid State Circuits 55, 76–86 (2020).

Article 
ADS 

Google Scholar
 

Song, W. et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science 383, 903–910 (2024).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Wang, J. et al. Drift-aware feature learning based on autoencoder preprocessing for soft sensors. Adv. Intell. Syst 6, 2300486 (2024).

Article 

Google Scholar
 

Eldebiky, A., Zhang, G. L., Boecherer, G., Li, B. & Schlichtmann, U. CorrectNet: robustness enhancement of analog in-memory computing for neural networks by error suppression and compensation. 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6 (2023).

Xiao, Z. et al. Multimodal in-sensor computing system using integrated silicon photonic convolutional processor. Adv. Sci. 11, 2408597 (2024).

Article 
CAS 

Google Scholar
 

Jiang, C. et al. 60 nm Pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic tactile sensor for in-chip computing. Nano Energy 87, 106190 (2021).

Article 
CAS 

Google Scholar
 

Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. https://doi.org/10.1038/s41928-021-00585-x (2021).

Otseidu, K., Jia, T., Bryne, J., Hargrove, L. & Gu, J. Design and optimization of edge computing distributed neural processor for biomedical rehabilitation with sensor fusion. In Proc. International Conference on Computer-Aided Design 1–8 (ACM, San Diego, CA, 2018).

Liu, X. et al. Near-sensor reservoir computing for gait recognition via a multi-gate electrolyte-gated transistor. Adv. Sci. 10, 2300471 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Yang, H. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, S. et al. Bioinspired in-sensor multimodal fusion for enhanced spatial and spatiotemporal association. Nano Lett. 24, 7091–7099 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Liang, X. et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 13, 1549 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, S. et al. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot. Nat. Commun. 15, 7056 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C. et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019).

Article 

Google Scholar
 

Rehman, S., Khan, M. F., Kim, H.-D. & Kim, S. Analog–digital hybrid computing with SnS2 memtransistor for low-powered sensor fusion. Nat. Commun. 13, 2804 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moosmann, J. et al. Ultra-efficient on-device object detection on AI-integrated smart glasses with TinyissimoYOLO. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 262–280 (2024).

Lee, S.-W. et al. An artificial olfactory sensory neuron for selective gas detection with in-sensor computing. Device 1, 100063 (2023).

Article 

Google Scholar
 

Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).

Article 

Google Scholar
 

Kapoor, R., Anastasiu, D. C. & Choi, S. ML-NIC: accelerating machine learning inference using smart network interface cards. Front. Comput. Sci. 6, 1493399 (2025).

Article 

Google Scholar
 

Du, Y. et al. Monolithic 3D integration of analog RRAM-based computing-in-memory and sensor for energy-efficient near-sensor computing. Adv. Mater. 36, 2302658 (2024).

Article 
CAS 

Google Scholar
 

Valenzuela, W., Saavedra, A., Zarkesh-Ha, P. & Figueroa, M. Motion-based object location on a smart image sensor using on-pixel memory. Sensors 22, 6538 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ma, S. et al. BitNet b1.58 2B4T technical report. Preprint at https://doi.org/10.48550/arXiv.2504.12285 (2025).

Kandala, S. V., Medaranga, P. & Varshney, A. TinyLLM: A framework for training and deploying language models at the edge computers. Preprint at https://doi.org/10.48550/arXiv.2412.15304 (2024).

Shen, X. et al. HotaQ: hardware oriented token adaptive quantization for large language models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. https://doi.org/10.1109/TCAD.2024.3487781 (2024).

Zheng, Y. et al. A review on edge large language models: design, execution, and applications. ACM Comput Surv 57, 209:1–209:35 (2025).

Article 

Google Scholar
 

Cai, F., Yuan, D., Yang, Z. & Cui, L. Edge-LLM: A collaborative framework for large language model serving in edge computing. In 2024 IEEE International Conference on Web Services (ICWS) 799–809 https://doi.org/10.1109/ICWS62655.2024.00099 (2024).