Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nat Rev Microbiol. 2023;21:604–18. https://doi.org/10.1038/s41579-023-00901-6.
Steen CJ, Carbonaro PA, Schwartz RA. Arthropods in dermatology. J Am Acad Dermatol. 2004;50:819–44. https://doi.org/10.1016/j.jaad.2003.12.019.
Angus BM. The history of the cattle tick Boophilus microplus in Australia and achievements in its control. Int J Parasitol. 1996;26:1341–55. https://doi.org/10.1016/s0020-7519(96)00112-9.
Chitimia-Dobler L, Barboutis C, Bounas A, Kassara C, Mans BJ, Saratsis A. Discovery of a novel mediterranean Haemaphysalis (Ornithophysalis) doenitzi group tick species infesting Falco eleonorae on Antikythira Island, Greece. Parasitology. 2024;151:933–45. https://doi.org/10.1017/S0031182024000866.
Zhang SB, Gao ZH, Wang YK, et al. The evaluation of cystatin protein vaccines based on the stress response of ticks triggered by low-temperature and toxin stress in Haemaphysalis doenitzi. Pest Manag Sci. 2024;80:3957–66. https://doi.org/10.1002/ps.8099.
Hoogstraal H, Wassef HY. The haemaphysalis ticks (Ixodoidea: Ixodidae) of birds. 3. H. (Ornithophysalis) subgen. n.: definition, species, hosts, and distribution in the Oriental, Palearctic, Malagasy, and Ethiopian faunal regions. J Parasitol. 1973;59:1099–117. https://doi.org/10.2307/3278650.
Fei S, Zhao H, Yin J, et al. Molecular identification and genetic characterization of public health threatening ticks – Chongming Island, China, 2021–2022. China CDC Wkly. 2023;5:815–21. https://doi.org/10.46234/ccdcw2023.156.
Saito Y, Hoogstraal H, Wassef HY. The Haemaphysalis ticks (Ixodoidea: Ixodidae) of birds. 4. H. (Ornithophysalis) phasiana sp. n. from Japan. J Parasitol. 1974;60:198–208. https://doi.org/10.2307/3278700.
Kim H, Chong S, Choi C, Nam H, Chae H, Klein T, et al. Tick surveillance, including new records for three Haemaphysalis species (Acari: Ixodidae) collected from migratory birds during 2009 on Hong Island (Hong-do), Republic of Korea. Syst Appl Acarol. 2016;211:596–606. https://doi.org/10.11158/saa.21.5.4.
Martin M, Cecilie D, Petter W, Morten T, Barbara Z. Patterns of cattle and sheep losses related to large carnivores and other causes in the outfields of Norway. Biol Conserv. 2025;305:111107. https://doi.org/10.1016/j.biocon.2025.111107.
Zhang S, Gao Z, Dong K, et al. Functional analysis of novel cystatins from Haemaphysalis doenitzi and evaluation of their roles in cypermethrin and λ-cyhalothrin resistance. Pestic Biochem Physiol. 2024;204:106075. https://doi.org/10.1016/j.pestbp.2024.106075.
Zhang D, Xiao Y, Xu P, Yang X, Wu Q, Wu K. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J Integr Agric. 2021;20:783–91. https://doi.org/10.1016/S2095-3119(20)63392-5.
Seo SM, Jung CS, Kang J, et al. Larvicidal and acetylcholinesterase inhibitory activities of apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J Agric Food Chem. 2015;63:9977–86. https://doi.org/10.1021/acs.jafc.5b03586.
Gao Z, Bai L, Xu X, et al. The contact toxicity and toxic mechanism of essential oils from Pimenta racemosa and Eugenia caryophyllata against Haemaphysalis longicornis (Acari: Ixodidae). Pestic Biochem Physiol. 2024;203:105992. https://doi.org/10.1016/j.pestbp.2024.105992.
Hao Y, Guo X, Yang R, et al. Unraveling the biosynthesis of carvacrol in different tissues of Origanum vulgare. Int J Mol Sci. 2022;23:13231. https://doi.org/10.3390/ijms232113231.
Rizzi L, Rafiq M, Cabrol M, et al. Effect of intercropping apple trees with basil (Ocimum basilicum) or French marigold (Tagetes patula) on the rosy apple aphid regulation (Dysaphis plantaginea) and the abundance of its natural enemies. Pest Manag Sci. 2025;81:1373–83. https://doi.org/10.1002/ps.8538.
Zhang XL, Guo YS, Wang CH, et al. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chem. 2014;152:300–6. https://doi.org/10.1016/j.foodchem.2013.11.153.
Cetin H, Erler F, Yanikoglu A. A comparative evaluation of Origanum onites essential oil and its four major components as larvicides against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Pest Manag Sci. 2007;63:830–3. https://doi.org/10.1002/ps.1401.
Carroll JF, Demirci B, Kramer M, et al. Repellency of the Origanum onites L. essential oil and constituents to the lone star tick and yellow fever mosquito. Nat Prod Res. 2017;31:2192–7. https://doi.org/10.1080/14786419.2017.1280485.
Lun X, Jin M, Chen Z, et al. Flowering Ocimum gratissimum intercropped in tea plantations attracts and reduces Apolygus lucorum populations. Pest Manag Sci. 2024;80:4841–52. https://doi.org/10.1002/ps.8120.
Karen M, Monica P. Oil and gas development and its effect on bird diversity in the high plains of Colorado (2003–2018). Biol Conserv. 2021;263:109358. https://doi.org/10.1016/j.biocon.2021.109358.
Euijin Y, JooHeon C, HeeJin K, Young H. Comparison of the toxicity and potential ecological risks of various pesticides for nurses of honey bee (Apis mellifera. L). Environ Chem Ecotoxicol. 2025;7:791–801. https://doi.org/10.1016/j.enceco.2025.04.008.
Guo F, Zhao R, Li T, Wu S, Jiang S, Tian H, et al. Toxicity and oviposition-deterrent effects of ten plant essential oils on Bactrocera dorsalis Hendel adults. J Mt Agric Biol. 2020;39:63–6.
Abdullah S, Yadav CL, Vatsya S. Esterase profile of Rhipicephalus (Boophilus) microplus populations collected from Northern India exhibiting varied susceptibility to deltamethrin. Exp Appl Acarol. 2012;58:315–25. https://doi.org/10.1007/s10493-012-9584-3.
Ruiz-May E, Álvarez-Sánchez ME, Aguilar-Tipacamú G, et al. Comparative proteome analysis of the midgut of Rhipicephalus microplus (Acari: Ixodidae) strains with contrasting resistance to ivermectin reveals the activation of proteins involved in the detoxification metabolism. J Proteomics. 2022;263:104618. https://doi.org/10.1016/j.jprot.2022.104618.
Gonzaga BCF, de Moraes NR, Gomes GW, et al. Combination of synthetic acaricides with (E)-cinnamaldehyde to control Rhipicephalus microplus. Exp Appl Acarol. 2022;88:191–207. https://doi.org/10.1007/s10493-022-00743-6.
Maciel WG, Lopes WD, Cruz BC, et al. Ten years later: evaluation of the effectiveness of 12.5% amitraz against a field population of Rhipicephalus (Boophilus) microplus using field studies, artificial infestation (Stall tests) and adult immersion tests. Vet Parasitol. 2015;214:233–41. https://doi.org/10.1016/j.vetpar.2015.10.024.
Carroll JF, Cantrell CL, Klun JA, Kramer M. Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Exp Appl Acarol. 2007;41:215–24. https://doi.org/10.1007/s10493-007-9057-2.
Meng H, Li AY, Costa Junior LM, Castro-Arellano I, Liu J. Evaluation of DEET and eight essential oils for repellency against nymphs of the lone star tick, Amblyomma americanum (Acari: Ixodidae). Exp Appl Acarol. 2016;68:241–9. https://doi.org/10.1007/s10493-015-9994-0.
Qiao Y, Yu Z, Bai L, et al. Chemical composition of essential oils from Thymus mongolicus, Cinnamomum verum, and Origanum vulgare and their acaricidal effects on Haemaphysalis longicornis (Acari: Ixodidae). Ecotoxicol Environ Saf. 2021;224:112672. https://doi.org/10.1016/j.ecoenv.2021.112672.
Yeom HJ, Jung CS, Kang J, et al. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J Agric Food Chem. 2015;63:2241–8. https://doi.org/10.1021/jf505927n.
Sharifi-Rad M, Berkay Yılmaz Y, Antika G, et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res. 2021;35:95–121. https://doi.org/10.1002/ptr.6785.
Saran P, Damor H, Lal M, Sarkar R, Kalariya K, Suthar M. Identification of suitable chemotype of Ocimum gratissimum L. for cost effective eugenol production. Ind Crops Prod. 2023;191:0926–6690. https://doi.org/10.1016/j.indcrop.2022.115890.
Silva Lima A, Milhomem MN, Santos Monteiro O, et al. Seasonal analysis and acaricidal activity of the thymol-type essential oil of Ocimum gratissimum and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2018;117:59–65. https://doi.org/10.1007/s00436-017-5662-0.
Aboelhadid SM, Abdel-Tawab H, Mahran HA, et al. Synergistic larvicidal and repellent effects of essential oils of three Origanum species on Rhipicephalus annulatus tick. Exp Appl Acarol. 2022;87:273–87. https://doi.org/10.1007/s10493-022-00737-4.
Liggri PGV, Tsitsanou KE, Stamati ECV, et al. The structure of AgamOBP5 in complex with the natural insect repellents Carvacrol and Thymol: crystallographic, fluorescence and thermodynamic binding studies. Int J Biol Macromol. 2023;237:124009. https://doi.org/10.1016/j.ijbiomac.2023.124009.
Veljovic K, Tesevic V, Mitrovic H, Stankovic M. Essential oil of origanum minutiflorum exhibits anti-inflammatory and antioxidative effects in human bronchial cells and antimicrobial activity on lung pathogens. J Herbal Med. 2023;39:100651. https://doi.org/10.1016/j.hermed.2023.100651.
Somensi N, Rabelo TK, Guimarães AG, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 2019;75:105743. https://doi.org/10.1016/j.intimp.2019.105743.
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-a natural phenolic compound with antimicrobial properties. Antibiotics. 2023;12:824. https://doi.org/10.3390/antibiotics12050824.
Tabari MA, Youssefi MR, Maggi F, Benelli G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol. 2017;245:86–91. https://doi.org/10.1016/j.vetpar.2017.08.012.
Anjos OO, Gomes MN, Tavares CP, et al. Polymeric films of corn starch enhance the lethal effects of thymol and carvacrol terpenes upon Rhipicephalus microplus ticks. Vet Parasitol. 2024;327:110149. https://doi.org/10.1016/j.vetpar.2024.110149.
Pazinato R, Volpato A, Baldissera MD, et al. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J Adv Res. 2016;7:1029–34. https://doi.org/10.1016/j.jare.2016.05.003.
Gao Z, Yu Z, Qiao Y, et al. Chemical profiles and enzyme-targeting acaricidal properties of essential oils from Syzygium aromaticum, Ilex chinensis and Citrus limon against Haemaphysalis longicornis (Acari: Ixodidae). Ind Crops Prod. 2022;188:115697. https://doi.org/10.1016/j.indcrop.2022.115697.
Aboelhadid SM, Abdel-Baki AS, Ibrahium SM, et al. The efficacy of essential oil components with ivermectin against Rhipicephalus annulatus: an in-vitro study. Vet Parasitol. 2024;332:110335. https://doi.org/10.1016/j.vetpar.2024.110335.
Rempel S, Stanek WK, Slotboom DJ. ECF-type ATP-binding cassette transporters. Annu Rev Biochem. 2019;88:551–76. https://doi.org/10.1146/annurev-biochem-013118-111705.
Lu H, Xu Y, Cui F. Phylogenetic analysis of the ATP-binding cassette transporter family in three mosquito species. Pestic Biochem Physiol. 2016;132:118–24. https://doi.org/10.1016/j.pestbp.2015.11.006.
Amezian D, Nauen R, Van Leeuwen T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. Curr Opin Insect Sci. 2024;63:101200. https://doi.org/10.1016/j.cois.2024.101200.
Nwanade CF, Wang M, Yu Z, Liu J. Biochemical and molecular mechanisms involved in the response of Haemaphysalis longicornis (acari: ixodidae) to Cinnamomum cassia essential oil and its major constituent. J Pest Sci. 2024;97:99–111. https://doi.org/10.1007/s10340-023-01602-y.
Yuan YH, Lin XN, Xu XM, Liu LX, Li XJ, Liu YG. Antifungal mechanism of rose, mustard, and their blended essential oils against Cladosporium allicinum isolated from Xinjiang naan and its storage application. J Appl Microbiol. 2024;135:lxae010. https://doi.org/10.1093/jambio/lxae010.
Tomsuk Ö, Kuete V, Sivas H, Kürkçüoğlu M. Effects of essential oil of Origanum onites and its major component carvacrol on the expression of toxicity pathway genes in HepG2 cells. BMC Complement Med Ther. 2024;24:265. https://doi.org/10.1186/s12906-024-04571-6.
Zhang Z, Zhao Y, Chen X, et al. Effects of cinnamon essential oil on the physiological metabolism of Salmonella enteritidis. Front Microbiol. 2022;13:1035894. https://doi.org/10.3389/fmicb.2022.1035894.
Xiao Y, Liu K, Zhang D, et al. Resistance to Bacillus thuringiensis mediated by an ABC transporter mutation increases susceptibility to toxins from other bacteria in an invasive insect. PLoS Pathog. 2016;12:e1005450. https://doi.org/10.1371/journal.ppat.1005450.
Yao PH, Mobarak SH, Yang MF, Hu CX. Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation. BMC Genomics. 2025;26:14. https://doi.org/10.1186/s12864-024-11185-2.
Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8. https://doi.org/10.1111/j.1365-2583.2004.00529.x.
Zhao M, Gao Z, Ji X, et al. The diverse functions of Mu-class Glutathione S-transferase HrGSTm1 during the development of Hyalomma rufipes with a focus on the detoxification metabolism of cyhalothrin. Parasit Vectors. 2024;17:1. https://doi.org/10.1186/s13071-023-06084-6.
Ahmed FS, Helmy WS, Alfuhaid NA, Moustafa MAM. Target enzymes of origanum majorana and rosmarinus officinalis essential oils in black cutworm (agrotis ipsilon). In vitro and in silico studies. Insects. 2024;15:483. https://doi.org/10.3390/insects15070483.
Le Gall VL, Klafke GM, Torres TT. Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Sci Rep. 2018;8:12401. https://doi.org/10.1038/s41598-018-30907-7.
Nauen R, Bass C, Feyereisen R, Vontas J. The role of cytochrome P450s in insect toxicology and resistance. Annu Rev Entomol. 2022;67:105–24. https://doi.org/10.1146/annurev-ento-070621-061328.
Ibrahim H, Nchiozem-Ngnitedem VA, Dandurand LM, Popova I. Naturally-occurring nematicides of plant origin: two decades of novel chemistries. Pest Manag Sci. 2025;81:540–71. https://doi.org/10.1002/ps.8504.
Liang X, Xiao D, He Y, Yao J, Zhu G, Zhu KY. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int J Mol Sci. 2015;16:2078–98. https://doi.org/10.3390/ijms16012078.
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. Pestic Biochem Physiol. 2023;197:105707. https://doi.org/10.1016/j.pestbp.2023.105707.
Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products. Plant Physiol Biochem. 2025;222:109695. https://doi.org/10.1016/j.plaphy.2025.109695.
Lee NH, Lee S, Chung N, Lee HS. Haemaphysalis longicornis and carvacrol as acaricide: efficacy and mechanism of action. Molecules. 2025;30:1518. https://doi.org/10.3390/molecules30071518.
Feng X, Li M, Liu N. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica Insect. Biochem Mol Biol. 2018;92:30–9. https://doi.org/10.1016/j.ibmb.2017.11.007.
Niu X, Liu Y, Zhao R, et al. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci. 2025;335:103342. https://doi.org/10.1016/j.cis.2024.103342.
Pastor J, García M, Steinbauer S, et al. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015;145:31–8. https://doi.org/10.1016/j.actatropica.2015.02.002.
Tong F, Gross AD, Dolan MC, Coats JR. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Manag Sci. 2013;69:775–80. https://doi.org/10.1002/ps.3443.
Rice PJ, Coats JR. Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol. 1994;87:1172–9. https://doi.org/10.1093/jee/87.5.1172.
Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14:3106–19. https://doi.org/10.2174/138161208786404227.