McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

CAS 
PubMed 

Google Scholar
 

Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117.

CAS 
PubMed 

Google Scholar
 

Yuan J, Hu J, Liu W, Chen S, Zhang F, Wang S, et al. Camelus knoblochi genome reveals the complex evolutionary history of Old World camels. Curr Biol. 2024;34:2502–8.

CAS 
PubMed 

Google Scholar
 

Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2006;37:545–79.


Google Scholar
 

Gan HM, Grandjean F, Jenkins TL, Austin CM. Absence of evidence is not evidence of absence: Nanopore sequencing and complete assembly of the European lobster (Homarus gammarus) mitogenome uncovers the missing nad2 and a new major gene cluster duplication. BMC Genomics. 2019;20:335.

PubMed 
PubMed Central 

Google Scholar
 

Kieleczawa J. Fundamentals of sequencing of difficult templates—an overview. J Biomol Tech. 2006;17:207–17.

PubMed 
PubMed Central 

Google Scholar
 

Cameron SL. Insect mitochondrial genomics: a decade of progress. Annu Rev Entomol. 2025;70:83–101.

CAS 
PubMed 

Google Scholar
 

Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13:36–46.

CAS 

Google Scholar
 

Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 2021;22:120.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Macey JR, Pabinger S, Barbieri CG, Buring ES, Gonzalez VL, Mulcahy DG, et al. Evidence of two deeply divergent co-existing mitochondrial genomes in the Tuatara reveals an extremely complex genomic organization. Commun Biol. 2021;4:116.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Minhas BF, Beck EA, Cheng CHC, Catchen J. Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Sci Rep. 2023;13:6939.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jakovlić I, Zou H, Ye T, Zhang H, Liu X, Xiang CY, et al. Mitogenomic evolutionary rates in bilateria are influenced by parasitic lifestyle and locomotory capacity. Nat Commun. 2023;14:6307.

PubMed 
PubMed Central 

Google Scholar
 

Hardy NB. The biodiversity of Sternorrhyncha: scale insects, aphids, psyllids, and whiteflies. In: Foottit RG, Adler PH, editors. Insect Biodiversity: Science and Society, vol. II. Hoboken: John Wiley & Sons Ltd; 2018. p. 591–625.


Google Scholar
 

García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. ScaleNet: a literature-based model of scale insect biology and systematics. Database. 2016;2016:bav118.

PubMed 
PubMed Central 

Google Scholar
 

Deng J, Lu C, Huang X. The first mitochondrial genome of scale insects (Hemiptera: Coccoidea). Mitochondrial DNA Part B. 2019;4:2094–5.

PubMed 
PubMed Central 

Google Scholar
 

Lu C, Huang X, Deng J. Mitochondrial genomes of soft scales (Hemiptera: Coccidae): features, structures and significance. BMC Genomics. 2023;24:37.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu H, Liu X, Wang P, Li H, Wu SA. Phylogenetic implications of mitogenomic sequences and gene rearrangements of scale insects (Hemiptera, Coccoidea). Insects. 2023;14:257.

PubMed 
PubMed Central 

Google Scholar
 

Hu K, Yu S, Zhang N, Tian M, Ban Q, Fan Z, et al. The first complete mitochondrial genome of Matsucoccidae (Hemiptera, Coccoidea) and implications for its phylogenetic position. Biodivers Data J. 2022;10:e94915.

PubMed 
PubMed Central 

Google Scholar
 

Hodgson CJ, Hardy NB. The phylogeny of the superfamily Coccoidea (Hemiptera: Sternorrhyncha) based on the morphology of extant and extinct macropterous males. Syst Entomol. 2013;38(4):794–804.


Google Scholar
 

Cook LG, Gullan PJ, Trueman HE. A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA. Mol Phylogenet Evol. 2002;25:43–52.

CAS 
PubMed 

Google Scholar
 

Deng J, Weng X, Ma W, Zhang L, Wang C, Zhou Q, et al. Genomic insights into the phylogeny and evolutionary history of scale insects (Hemiptera: Coccoidea): resolving family-level relationships. Mol Phylogenet Evol. 2025;210:108383.

CAS 
PubMed 

Google Scholar
 

Camacho ER, Chong JH. General biology and current management approaches of soft scale pests (Hemiptera: Coccidae). J Integr Pest Manag. 2015;6:17.

PubMed 
PubMed Central 

Google Scholar
 

Herrbach E, Le Maguet J, Hommay G. CHAPTER 11: Virus transmission by mealybugs and soft scales (Hemiptera: Coccoidea). In: Brown JK, editor. Vector-Mediated Transmission of Plant Pathogens. Saint Paul: APS Press; 2016. p. 211–30.


Google Scholar
 

Tong HJ, Ao Y, Li ZH, Wang Y, Jiang MX. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: current knowledge and future directions. J Integr Agric. 2019;18:758–70.


Google Scholar
 

Liu Y, Shi J. Predicting the potential global geographical distribution of two Icerya species under climate change. Forests. 2020;11:684.


Google Scholar
 

Shan Y, Gao X, Hu X, Hou Y, Wang F. Current and future potential distribution of the invasive scale Ceroplastes rusci (L., 1758) (Hemiptera: Coccidae) under climate niche. Pest Manag Sci. 2023;79:1184–92.

CAS 
PubMed 

Google Scholar
 

Reineke A, Karlovsky P, Zebitz CPW. Preparation and purification of DNA from insects for AFLP analysis. Insect Mol Biol. 1998;7:95–9.

CAS 
PubMed 

Google Scholar
 

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

PubMed 
PubMed Central 

Google Scholar
 

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

CAS 
PubMed 

Google Scholar
 

Dierckxsens N, Mardulyn P, Smits G. NOVOplasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45:e18.

PubMed 

Google Scholar
 

Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660–6.

CAS 
PubMed 

Google Scholar
 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

PubMed 
PubMed Central 

Google Scholar
 

Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. 2022;13:6968.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Darwin Tree of Life Consortium, Formenti G, Abueg L, et al. Mitohifi: a python pipeline for mitochondrial genome assembly from Pacbio high fidelity reads. BMC Bioinformatics. 2023;24:288.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.

PubMed 

Google Scholar
 

Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1–14.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–5.

CAS 
PubMed 

Google Scholar
 

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perna NT, Kocher TD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 1995;41:353–8.

CAS 
PubMed 

Google Scholar
 

Zhang Z. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genom Proteom Bioinf. 2022;20(3):536–40.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Käll L, Krogh A, Sonnhammer E.L.L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 2007;35:W429–32.

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

CAS 
PubMed 

Google Scholar
 

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33:2583–5.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007;23:2957–8.

CAS 
PubMed 

Google Scholar
 

Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.81. 2023. http://mesquiteproject.org.

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

CAS 
PubMed 

Google Scholar
 

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.

CAS 
PubMed 

Google Scholar
 

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol. 2012;61:539–42.

Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol. 2024;22:15.

PubMed 
PubMed Central 

Google Scholar
 

Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Darwin Tree of Life Consortium, Formenti G, Abueg L, et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 2023;24:288.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun X, Wang Y, Chen P, Wang H, Lu L, Ye Z, et al. Biased heteroplasmy within the mitogenomic sequences of Gigantometra gigas revealed by sanger and high-throughput methods. Zool Syst. 2018;43:356–86.


Google Scholar
 

Ladoukakis ED, Zouros E. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res-Thessaloniki. 2017;24:2.


Google Scholar
 

Morgan B, Wang TY, Chen YZ, Moctezuma V, Burgos O, Le MH, et al. Long-read sequencing data reveals dynamic evolution of mitochondrial genome size and the phylogenetic utility of mitochondrial DNA in Hercules beetles (Dynastes; Scarabaeidae). Genome Biol Evol. 2022;14:evac147.

PubMed 
PubMed Central 

Google Scholar
 

Novosolov M, Yahalomi D, Chang ES, Fiala I, Cartwright P, Huchon D. The phylogenetic position of the enigmatic, Polypodium hydriforme (Cnidaria, Polypodiozoa): insights from mitochondrial genomes. Genome Biol Evol. 2022;14:evac112.

PubMed 
PubMed Central 

Google Scholar
 

Kinkar L, Gasser RB, Webster BL, Rollinson D, Littlewood DTJ, Chang BCH, et al. Nanopore sequencing resolves elusive long tandem-repeat regions in mitochondrial genomes. Int J Mol Sci. 2021;22:1811.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo ZL, Yuan ML. Research progress of mitochondrial genomes of Hemiptera insects. Sci Sin Vitae. 2016;46:151–66.


Google Scholar
 

Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2001;2:research0010.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE. Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol. 2013;30:347–55.

CAS 
PubMed 

Google Scholar
 

Devenish RJ, Papakonstantinou T, Galanis M, Law RH, Linnane AW, Nagley P. Structure/function analysis of yeast mitochondrial ATP synthase subunit 8. Ann N Y Acad Sci. 1992;671:403–14.

CAS 
PubMed 

Google Scholar
 

Gissi C, Iannelli F, Pesole G. Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians. J Mol Evol. 2004;58:376–89.

CAS 
PubMed 

Google Scholar
 

Papakonstantinou T, Galanis M, Nagley P, Devenish RJ. Each of three positively-charged amino acids in the C-terminal region of yeast mitochondrial ATP synthase subunit 8 is required for assembly. Biochim Biophys Acta. 1993;1144:22–32.

CAS 
PubMed 

Google Scholar
 

Papakonstantinou T, Law RH, Nagley P, Devenish RJ. Non-functional variants of yeast mitochondrial ATP synthase subunit 8 that assemble into the complex. Biochem Mol Biol Int. 1996;39:253–60.

CAS 
PubMed 

Google Scholar
 

Zhao B, Gao S, Zhao M, Lv H, Song J, Wang H, et al. Mitochondrial genomic analyses provide new insights into the “missing” atp8 and adaptive evolution of Mytilidae. BMC Genomics. 2022;23:738.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang KJ, Zhu WC, Rong X, Zhang YK, Ding XL, Liu J, et al. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. BMC Genomics. 2013;14(1):417.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Egger B, Bachmann L, Fromm B. Atp8 is in the ground pattern of flatworm mitochondrial genomes. BMC Genomics. 2017;18:414.

PubMed 
PubMed Central 

Google Scholar
 

Wende S, Platzer EG, Jühling F, Pütz J, Florentz C, Stadler PF, et al. Biological evidence for the world’s smallest tRNAs. Biochimie. 2014;100:151–8.

CAS 
PubMed 

Google Scholar
 

Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20:665.

PubMed 
PubMed Central 

Google Scholar
 

Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987;84:1324–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xue XF, Guo JF, Dong Y, Hong XY, Shao R. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep. 2016;6:18920.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beckenbach AT, Joy JB. Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biol Evol. 2009;1:278–87.

PubMed 
PubMed Central 

Google Scholar
 

Zhang J. Recognition of the tRNA structure: everything everywhere but not all at once. Cell Chem Biol. 2024;31:36–52.

CAS 
PubMed 

Google Scholar
 

Watanabe Y, Suematsu T, Ohtsuki T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front Genet. 2014;5:109.

PubMed 
PubMed Central 

Google Scholar
 

Jühling T, Duchardt-Ferner E, Bonin S, Wöhnert J, Pütz J, Florentz C, et al. Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res. 2018;46:9170–80.

PubMed 
PubMed Central 

Google Scholar
 

Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, et al. Adaptation of the Romanomermis culicivorax CCA-adding enzyme to miniaturized armless tRNA substrates. Int J Mol Sci. 2020;21:9047.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, et al. An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem. 2001;276:21571–7.

CAS 
PubMed 

Google Scholar
 

Sato A, Suematsu T, Aihara KK, Kita K, Suzuki T, Watanabe K, et al. Duplication of Drosophila melanogaster mitochondrial EF-Tu: pre-adaptation to T-arm truncation and exclusion of bulky aminoacyl residues. Biochem J. 2017;474:957–69.

CAS 
PubMed 

Google Scholar
 

Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2012;40:2833–45.

PubMed 

Google Scholar
 

Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nat Commun. 2022;13:5100.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition. Nat Commun. 2023;14:4794.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bhattacharyya SN, Adhya S. The complexity of mitochondrial tRNA import. RNA Biol. 2004;1:84–8.

CAS 
PubMed 

Google Scholar
 

Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol. 2008;25:949–59.

CAS 
PubMed 

Google Scholar
 

Ye F, Li H, Xie Q. Mitochondrial genomes from two specialized subfamilies of Reduviidae (Insecta: Hemiptera) reveal novel gene rearrangements of true bugs. Genes. 2021;12:1134.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang H, Lu C, Liu Q, Zou T, Qiao G, Huang X. Insights into the evolution of aphid mitogenome features from new data and comparative analysis. Animals. 2022;12:1970.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev. 1998;8:668–74.

CAS 
PubMed 

Google Scholar
 

Montaña-Lozano P, Moreno-Carmona M, Ochoa-Capera M, Medina NS, Boore JL, Prada CF. Comparative genomic analysis of vertebrate mitochondrial reveals a differential of rearrangements rate between taxonomic class. Sci Rep. 2022;12:5479.

PubMed 
PubMed Central 

Google Scholar
 

Boore JL. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau J, editors. Comparative Genomics. Dordrecht: Kluwer Academic Publishers; 2000. p. 133–47.


Google Scholar
 

Dowton M, Campbell NJ. Intramitochondrial recombination-is it why some mitochondrial genes sleep around? Trends Ecol Evol. 2001;16:269–71.

CAS 
PubMed 

Google Scholar
 

Lavrov DV, Boore JL, Brown WM. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol. 2002;19:163–9.

CAS 
PubMed 

Google Scholar
 

Rawlings TA, Collins TM, Bieler R. Changing identities: tRNA duplication and remolding within animal mitochondrial genomes. Proc Natl Acad Sci U S A. 2003;100:15700–5.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet. 2010;87:237–49.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sweet AD, Johnson KP, Cameron SL. Independent evolution of highly variable, fragmented mitogenomes of parasitic lice. Commun Biol. 2022;5:677.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu N, Liu J, Wang S, Guo X. Comparative analysis of mitochondrial genomes in two subspecies of the sunwatcher toad-headed agama (Phrynocephalus helioscopus): prevalent intraspecific gene rearrangements in Phrynocephalus. Genes. 2022;13:203.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xia Y, Zheng Y, Murphy RW, Zeng X. Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri. BMC Genomics. 2016;17:965.

PubMed 
PubMed Central 

Google Scholar
 

Lunt DH, Whipple LE, Hyman BC. Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol. 1998;7:1441–55.

CAS 
PubMed 

Google Scholar
 

Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987;4:203–21.

CAS 
PubMed 

Google Scholar
 

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.

CAS 
PubMed 

Google Scholar
 

Ray DA, Densmore LD. Repetitive sequences in the crocodilian mitochondrial control region: poly-A sequences and heteroplasmic tandem repeats. Mol Biol Evol. 2003;20:1006–13.

CAS 
PubMed 

Google Scholar
 

Verscheure S, Backeljau T, Desmyter S. Dog mitochondrial genome sequencing to enhance dog mtDNA discrimination power in forensic casework. Forensic Sci Int Genet. 2014;12:60–8.

CAS 
PubMed 

Google Scholar
 

Zhang DX, Hewitt GM. Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol. 1997;25:99–120.


Google Scholar
 

Liang G, Mi D, Chang J, On Yau T, Xu G, Ruan J, et al. Precise annotation of Drosophila mitochondrial genomes leads to insights into AT-rich regions. Mitochondrion. 2022;65:145–9.

CAS 
PubMed 

Google Scholar
 

White MM, Martin HR. Structure and conservation of tandem repeats in the mitochondrial DNA control region of the least brook lamprey (Lampetra aepyptera). J Mol Evol. 2009;68:715–23.

CAS 
PubMed 

Google Scholar
 

Gupta R, Kanai M, Durham TJ, Tsuo K, McCoy JG, Kotrys AV, et al. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature. 2023;620:839–48.

CAS 
PubMed 
PubMed Central 

Google Scholar