Barik S. Immunophilins: for the love of proteins. Cell Mol Life Sci. 2006;63:2889–900.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang P, Heitman J. The cyclophilins. Genome Biol. 2005;6:226.

PubMed 
PubMed Central 

Google Scholar
 

Galat A. Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem. 2003;3:1315–47.

CAS 
PubMed 

Google Scholar
 

Tuccinardi T, Rizzolio F. Peptidyl-prolyl isomerases in human pathologies. Front Pharmacol. 2019;10:794.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Favretto F, Jiménez-Faraco E, Conter C, Dominici P, Hermoso JA, Astegno A. Structural basis for cyclosporin isoform-specific inhibition of cyclophilins from Toxoplasma gondii. ACS Infect Dis. 2023;9:365–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu Y, Ma Z, Zhang Y, Zhang M, Shi X, Zhang M, et al. The role of cyclophilins in viral infection and the immune response. J Infect. 2022;85:365–73.

CAS 
PubMed 

Google Scholar
 

Kalinina A, Grigorieva E, Smirnova A, Kazansky D, Khromykh L. Pharmacokinetic parameters of recombinant human cyclophilin A in mice. Eur J Drug Metab Pharmacokinet. 2024;49:57–69.

CAS 
PubMed 

Google Scholar
 

Lin D-T, Lechleiter JD. Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J Biol Chem. 2002;277:31134–41.

CAS 
PubMed 

Google Scholar
 

Harding MW. Immunophilins, mTOR, and pharmacodynamic strategies for a targeted cancer therapy: commentary re: JM Peralba et al., pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res., 9:2887–2892, 2003. Clin Cancer Res. 2003;9:2882–6.

CAS 
PubMed 

Google Scholar
 

Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, et al. The role of cyclophilins in inflammatory bowel disease and colorectal cancer. Int J Biol Sci. 2021;17:2548–60.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tajti G, Gebetsberger L, Pamlitschka G, Aigner-Radakovics K, Leitner J, Steinberger P, et al. Cyclophilin–CD147 interaction enables SARS-CoV-2 infection of human monocytes and their activation via Toll-like receptors 7 and 8. Front Immunol. 2025;16:1460089.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang J-j, Chen C, Xie P-f, Pan Y, Tan Y-h, Tang L-j. Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect. 2014;16:283–91.

CAS 
PubMed 

Google Scholar
 

Szempruch AJ, Dennison L, Kieft R, Harrington JM, Hajduk SL. Sending a message: extracellular vesicles of pathogenic protozoan parasites. Nat Rev Microbiol. 2016;14:669–75.

CAS 
PubMed 

Google Scholar
 

Sharma AK, Mal S, Sahu SK, Bagchi S, Majumder D, Chakravorty D, et al. Mycobacterial peptidyl prolyl isomerase A activates STING-TBK1-IRF3 signaling to promote IFNβ release in macrophages. FEBS J. 2025;292:94–114.

CAS 
PubMed 

Google Scholar
 

Zhao X, Zhao X, Di W, Wang C. Inhibitors of cyclophilin A: current and anticipated pharmaceutical agents for inflammatory diseases and cancers. Molecules. 2024;29:1235.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin a regulates tripartite motif 5 alpha restriction of HIV-1. Int J Mol Sci. 2025;26:495.

PubMed 
PubMed Central 

Google Scholar
 

Molle J, Duponchel S, Rieusset J, Ovize M, Ivanov AV, Zoulim F, et al. Exploration of the role of cyclophilins in established hepatitis B and C infections. Viruses. 2024;17:11.

PubMed 
PubMed Central 

Google Scholar
 

Liao Y, Luo D, Peng K, Zeng Y. Cyclophilin A: a key player for etiological agent infection. Appl Microbiol Biotechnol. 2021;105:1365–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu M, Zhang X, Yu Q, Zhao Q, Li J, Gong P, et al. Characterization of cyclophilin 23 as a novel factor for development and pathogenicity of Cryptosporidium parvum. Vet Parasitol. 2025. https://doi.org/10.1016/j.vetpar.2025.110539.

Article 
PubMed 

Google Scholar
 

Kameyama K, Nishimura M, Punsantsogvoo M, Ibrahim HM, Xuan X, Furuoka H, et al. Immunological characterization of Neospora caninum cyclophilin. Parasitology. 2012;139:294–301.

CAS 
PubMed 

Google Scholar
 

Tuo W, Fetterer R, Jenkins M, Dubey J. Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production. Infect Immun. 2005;73:5093–100.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Acharya S, Da’dara AA, Skelly PJ. Schistosome immunomodulators. PLoS Pathog. 2021;17:e1010064.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kulkarni MM, Karafova A, Kamysz W, Schenkman S, Pelle R, McGwire BS. Secreted trypanosome cyclophilin inactivates lytic insect defense peptides and induces parasite calcineurin activation and infectivity. J Biol Chem. 2013;288:8772–84.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, et al. Insights into peptidyl-prolyl cis-trans isomerases from clinically important protozoans: from structure to potential biotechnological applications. Pathogens. 2024;13:644.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bruchhaus I, Roeder T, Lotter H, Schwerdtfeger M, Tannich E. Differential gene expression in Entamoeba histolytica isolated from amoebic liver abscess. Mol Microbiol. 2002;44:1063–72.

CAS 
PubMed 

Google Scholar
 

Carrero JC, Petrossian P, Olivos A, Sánchez-Zerpa Ma, Ostoa-Soloma P, Laclette JP. Effect of cyclosporine A on Entamoeba histolytica. Arch Med Res. 2000;31:S8-9.

CAS 
PubMed 

Google Scholar
 

Naiyer S, Bhattacharya A, Bhattacharya S. Advances in Entamoeba histolytica biology through transcriptomic analysis. Front Microbiol. 2019;10:1921.

PubMed 
PubMed Central 

Google Scholar
 

Yu H-S, Kong H-H, Chung D-I. Cloning and characterization of Giardia intestinalis cyclophilin. Korean J Parasitol. 2002;40:131–8.

PubMed 
PubMed Central 

Google Scholar
 

Hosse RJ, Krücken J, Bierbaum S, Greif G, Wunderlich F. Eimeria tenella: genomic organization and expression of an 89 kDa cyclophilin. Exp Parasitol. 2008;118:275–9.

CAS 
PubMed 

Google Scholar
 

Perkins ME, Wu TW, Le Blancq SM. Cyclosporin analogs inhibit in vitro growth of Cryptosporidium parvum. Antimicrob Agents Chemother. 1998;42:843–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin T, Lou Y-C, Chou C-C, Wei S-Y, Sadotra S, Cho C-C, et al. Structural basis of interaction between dimeric cyclophilin 1 and Myb1 transcription factor in Trichomonas vaginalis. Sci Rep. 2018;8:5410.

PubMed 
PubMed Central 

Google Scholar
 

Chu CH, Huang YH, Liu HW, Hsu HM, Tai JH. Membrane localization of a Myb3 transcription factor regulated by a TvCyP1 cyclophilin in the parasitic protozoan Trichomonas vaginalis. FEBS J. 2018;285:929–46.

CAS 
PubMed 

Google Scholar
 

Hsu H-M, Huang Y-H, Aryal S, Liu H-W, Chen C, Chen S-H, et al. Endomembrane protein trafficking regulated by a Tv CyP2 cyclophilin in the protozoan parasite, Trichomonas vaginalis. Sci Rep. 2020;10:1275.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yau W-L, Blisnick T, Taly J-F, Helmer-Citterich M, Schiene-Fischer C, Leclercq O, et al. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. PLoS Negl Trop Dis. 2010;4:e729.

PubMed 
PubMed Central 

Google Scholar
 

Yau WL, Lambertz U, Colineau L, Pescher P, MacDonald A, Zander D, et al. Phenotypic characterization of a Leishmania donovani cyclophilin 40 null mutant. J Eukaryot Microbiol. 2016;63:823–33.

CAS 
PubMed 

Google Scholar
 

Perrone AE, Milduberger N, Fuchs AG, Bustos PL, Bua J. A functional analysis of the cyclophilin repertoire in the protozoan parasite Trypanosoma cruzi. Biomolecules. 2018;8:132.

PubMed 
PubMed Central 

Google Scholar
 

Zheng Z-W, Li J, Chen H, He J-L, Chen Q-W, Zhang J-H, et al. Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors. 2020;13:132.


Google Scholar
 

Rascher C, Pahl A, Pecht A, Brune K, Solbach W, Bang H. Leishmania major parasites express cyclophilin isoforms with an unusual interaction with calcineurin. Biochem J. 1998;334:659–67.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jha B, Varikuti S, Bishop N, dos Santos G, McDonald J, Sur A, et al. An effective live vaccine strain of trypanosoma cruzi prevents chagas disease in the mouse model. https://www.researchgate.net/publication/346274839_An_Effective_Live_Vaccine_Strain_Of_Trypanosoma_Cruzi_Prevents_Chagas_Disease_In_The_Mouse_Model. 2020. Accessed Oct 2020.

Bua J, Fichera L, Fuchs A, Potenza M, Dubin M, Wenger R, et al. Anti-Trypanosoma cruzi effects of cyclosporin A derivatives: possible role of a P-glycoprotein and parasite cyclophilins. Parasitology. 2008;135:217–28.

CAS 
PubMed 

Google Scholar
 

Ibrahim HM, Nishimura M, Tanaka S, Awadin W, Furuoka H, Xuan X, et al. Overproduction of Toxoplasma gondii cyclophilin-18 regulates host cell migration and enhances parasite dissemination in a CCR5-independent manner. BMC Microbiol. 2014;14:76.

PubMed 
PubMed Central 

Google Scholar
 

Favretto F, Jiménez-Faraco E, Catucci G, Di Matteo A, Travaglini-Allocatelli C, Sadeghi SJ, et al. Evaluating the potential of non-immunosuppressive cyclosporin analogs for targeting Toxoplasma gondii cyclophilin: insights from structural studies. Protein Sci. 2024;33:e5157.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adams B, Musiyenko A, Kumar R, Barik S. A novel class of dual-family immunophilins. J Biol Chem. 2005;280:24308–14.

CAS 
PubMed 

Google Scholar
 

High K, Joiner K, Handschumacher R. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol Chem. 1994;269:9105–12.

CAS 
PubMed 

Google Scholar
 

Mineo TWP, Oliveira CJF, Silva DAO, Oliveira LL, Abatepaulo AR, Ribeiro DP, et al. Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration. Int J Parasitol. 2010;40:797–805.

CAS 
PubMed 

Google Scholar
 

Berriman M, Fairlamb AH. Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum. Biochem J. 1998;334:437–45.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bianchin A, Chubb AJ, Bell A. Immunophilins as possible drug targets in apicomplexan parasites. Compr Anal Parasite Biol: Metab Drug Discov: Metab Drug Discov. 2016. https://doi.org/10.1002/9783527694082.ch8.

Article 

Google Scholar
 

Leneghan D, Bell A. Immunophilin–protein interactions in Plasmodium falciparum. Parasitology. 2015;142:1404–14.

CAS 
PubMed 

Google Scholar
 

Zhao S, Liu J, Guan G, Liu A, Li Y, Yin H, et al. Theileria annulata Cyclophilin1 (TaCyp1) interacts with host cell MED21. Front Microbiol. 2018;9:2973.

PubMed 
PubMed Central 

Google Scholar
 

Marín-Menéndez A, Bell A. Overexpression, purification and assessment of cyclosporin binding of a family of cyclophilins and cyclophilin-like proteins of the human malarial parasite Plasmodium falciparum. Protein Expr Purif. 2011;78:225–34.

PubMed 

Google Scholar
 

Marín-Menéndez A, Monaghan P, Bell A. A family of cyclophilin-like molecular chaperones in Plasmodium falciparum. Mol Biochem Parasitol. 2012;184:44–7.

PubMed 

Google Scholar
 

Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis–trans isomerases (immunophilins) and their roles in parasite biochemistry, host–parasite interaction and antiparasitic drug action. Int J Parasitol. 2006;36:261–76.

CAS 
PubMed 

Google Scholar
 

Acharya P, Kumar R, Tatu U. Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol. 2007;153:85–94.

CAS 
PubMed 

Google Scholar
 

Krücken J, Greif G, von Samson-Himmelstjerna G. In silico analysis of the cyclophilin repertoire of apicomplexan parasites. Parasit Vectors. 2009;2:27.

PubMed 
PubMed Central 

Google Scholar
 

Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5.

CAS 
PubMed 

Google Scholar
 

Vance N. Quantification of Plasmodium falciparum Cyclophilin 19B transcripts via qPCR in normal and sickle-trait hemoglobin genotypes. Durham: Duke University; 2021.


Google Scholar
 

Ibrahim HM, Bannai H, Xuan X, Nishikawa Y. Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces bradyzoite conversion in a CCR5-dependent manner. Infect Immun. 2009;77:3686–95.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ibrahim HM, Xuan X, Nishikawa Y. Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells. Clin Vaccine Immunol. 2010;17:1322–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aliberti J, Valenzuela JG, Carruthers VB, Hieny S, Andersen J, Charest H, et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol. 2003;4:485–90.

CAS 
PubMed 

Google Scholar
 

Del Rio L, Butcher BA, Bennouna S, Hieny S, Sher A, Denkers EY. Toxoplasma gondii triggers myeloid differentiation factor 88-dependent IL-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors. J Immunol. 2004;172:6954–60.

CAS 
PubMed 

Google Scholar
 

Denkers EY. From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii. FEMS Immunol Med Microbiol. 2003;39:193–203.

CAS 
PubMed 

Google Scholar
 

Golding H, Aliberti J, King LR, Manischewitz J, Andersen J, Valenzuela J, et al. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood. 2003;102:3280–6.

CAS 
PubMed 

Google Scholar
 

Sassi A, Brichacek B, Hieny S, Yarovinsky F, Golding H, Grivel J-C, et al. Toxoplasma gondii inhibits R5 HIV-1 replication in human lymphoid tissues ex vivo. Microbes Infect. 2009;11:1106–13.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carey KL, Donahue CG, Ward GE. Identification and molecular characterization of GRA8, a novel, proline-rich, dense granule protein of Toxoplasma gondii. Mol Biochem Parasitol. 2000;105:25–37.

CAS 
PubMed 

Google Scholar
 

Ying Z, Wu Y, Sun Z, Liu J, Liu Q. The cyclophilin D (CypD) of Toxoplasma gondii is involved in the parasite’s response to oxidative stress damage. Parasitol Res. 2024;123:1–13.


Google Scholar
 

Dos Santos GP, Abukawa FM, Souza-Melo N, Alcântara LM, Bittencourt-Cunha P, Moraes CB, et al. Cyclophilin 19 secreted in the host cell cytosol by Trypanosoma cruzi promotes ROS production required for parasite growth. Cell Microbiol. 2021;23:e13295.

PubMed 

Google Scholar
 

Rêgo JV, Duarte AP, Liarte DB, de Carvalho SF, Barreto HM, Bua J, et al. Molecular characterization of cyclophilin (TcCyP19) in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Exp Parasitol. 2015;148:73–80.

PubMed 

Google Scholar
 

Perrone AE, Pinillo M, Rial MS, Fernández M, Milduberger N, González C, et al. Trypanosoma cruzi secreted cyclophilin Tc CyP19 as an early marker for trypanocidal treatment efficiency. Int J Mol Sci. 2023;24:11875.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Estrada D, Specker G, Martínez A, Dias PP, Hissa B, Andrade LO, et al. Cardiomyocyte diffusible redox mediators control Trypanosoma cruzi infection: role of parasite mitochondrial iron superoxide dismutase. Biochem J. 2018;475:1235–51.

CAS 
PubMed 

Google Scholar
 

Jha BK, Varikuti S, Verma C, Shivahare R, Bishop N, Dos Santos GP, et al. Immunization with a Trypanosoma cruzi cyclophilin-19 deletion mutant protects against acute Chagas disease in mice. NPJ Vaccines. 2023;8:63.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rassi JA, Marin JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 2017;112:224–35.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bakhtiyari M, Haji Aghasi A, Banihashemi S, Abbassioun A, Tavakol C, Zalpoor H. CD147 and cyclophilin a: a promising potential targeted therapy for COVID-19 and associated cancer progression and chemo-resistance. Infect Agents Cancer. 2023;18:20.

CAS 

Google Scholar
 

Roy S, Basu S, Datta AK, Bhattacharyya D, Banerjee R, Dasgupta D. Equilibrium unfolding of cyclophilin from Leishmania donovani: characterization of intermediate states. Int J Biol Macromol. 2014;69:353–60.

CAS 
PubMed 

Google Scholar
 

Venugopal V, Datta AK, Bhattacharyya D, Dasgupta D, Banerjee R. Structure of cyclophilin from Leishmania donovani bound to cyclosporin at 2.6 Å resolution: correlation between structure and thermodynamic data. Acta Crystallogr D Biol Crystallogr. 2009;65:1187–95.

CAS 
PubMed 

Google Scholar
 

Agallou M, Athanasiou E, Samiotaki M, Panayotou G, Karagouni E. Identification of immunoreactive Leishmania infantum protein antigens to asymptomatic dog sera through combined immunoproteomics and bioinformatics analysis. PLoS ONE. 2016;11:e0149894.

PubMed 
PubMed Central 

Google Scholar
 

Yurchenko V, Xue Z, Sherry B, Bukrinsky M. Functional analysis of Leishmania major cyclophilin. Int J Parasitol. 2008;38:633–9.

CAS 
PubMed 

Google Scholar
 

Venugopal V, Sen B, Datta AK, Banerjee R. Structure of cyclophilin from Leishmania donovani at 1.97 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63:60–4.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin–CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160:305–17.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Afrin F, Khan I, Hemeg HA. Leishmania-host interactions—An epigenetic paradigm. Front Immunol. 2019;10:492.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sen B, Venugopal V, Chakraborty A, Datta R, Dolai S, Banerjee R, et al. Amino acid residues of Leishmania donovani cyclophilin key to interaction with its adenosine kinase: biological implications. Biochemistry. 2007;46:7832–43.

CAS 
PubMed 

Google Scholar
 

Dhanda AS, Lulic KT, Vogl AW, Mc Gee MM, Chiu RH, Guttman JA. Listeria membrane protrusion collapse: requirement of cyclophilin A for Listeria cell-to-cell spreading. J Infect Dis. 2019;219:145–53.

CAS 
PubMed 

Google Scholar
 

Dhanda AS, Warren KE, Chiu RH, Guttman JA. Cyclophilin A controls Salmonella internalization levels and is present at E. coli actin-rich pedestals. Anat Rec. 2018;301:2086–94.

CAS 

Google Scholar
 

Dimou M, Venieraki A, Katinakis P. Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol. 2017;33:164.

PubMed 

Google Scholar
 

Floudas A, Cluxton CD, Fahel J, Khan AR, Saunders SP, Amu S, et al. Composition of the Schistosoma mansoni worm secretome: identification of immune modulatory cyclophilin A. PLoS Negl Trop Dis. 2017;11:e0006012.

PubMed 
PubMed Central 

Google Scholar
 

Li J, Zhuang W, Cong L, Shi W, Cai X, Huang F, et al. Cyclophilin A from Schistosoma japonicum promotes a Th2 response in mice. Parasit Vectors. 2013;6:330.

PubMed 
PubMed Central 

Google Scholar
 

Marin-Menendez A, Bell A. Identification and characterization of novel Plasmodium falciparum cyclophilins and their roles in the antimalarial actions of cyclosporin A and derivatives. Malar J. 2010;9:O3.

PubMed Central 

Google Scholar
 

Allman WR, Dey R, Liu L, Siddiqui S, Coleman AS, Bhattacharya P, et al. TACI deficiency leads to alternatively activated macrophage phenotype and susceptibility to Leishmania infection. Proc Natl Acad Sci U S A. 2015;112:E4094–103.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yun C, Lillehoj H, Lillehoj E. Intestinal immune responses to coccidiosis. Dev Comp Immunol. 2000;24:303–24.

CAS 
PubMed 

Google Scholar
 

Maeda H, Boldbaatar D, Kusakisako K, Galay RL, Aung KM, Umemiya-Shirafuji R, et al. Inhibitory effect of cyclophilin A from the hard tick Haemaphysalis longicornis on the growth of Babesia bovis and Babesia bigemina. Parasitol Res. 2013;112:2207–13.

PubMed 

Google Scholar
 

Milduberger N, Bustos PL, González C, Perrone AE, Postan M, Bua J. Trypanosoma cruzi infection in cyclophilin D deficient mice. Exp Parasitol. 2021;220:108044.

CAS 
PubMed 

Google Scholar
 

Hoerauf A, Rascher C, Bang R, Pahl A, Solbach W, Brune K, et al. Host-cell cyclophilin is important for the intracellular replication of Leishmania major. Mol Microbiol. 1997;24:421–9.

CAS 
PubMed 

Google Scholar
 

Nigro P, Pompilio G, Capogrossi M. Cyclophilin A: a key player for human disease. Cell Death Dis. 2013;4:e888.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993;73:1067–78.

CAS 
PubMed 

Google Scholar
 

Bukrinsky MI. Cyclophilins: unexpected messengers in intercellular communications. Trends Immunol. 2002;23:323–5.

CAS 
PubMed 

Google Scholar
 

Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1356540.

PubMed 
PubMed Central 

Google Scholar
 

Schor S, Einav S. Combating intracellular pathogens with repurposed host-targeted drugs. ACS Infect Dis. 2018;4:88–92.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther. 2024;25:2425127.

PubMed 
PubMed Central 

Google Scholar
 

Williams PD, Owens CR, Dziegielewski J, Moskaluk CA, Read PW, Larner JM, et al. Cyclophilin B expression is associated with in vitro radioresistance and clinical outcome after radiotherapy. Neoplasia. 2011;13:1122–31.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Motawea KR, Elhalag RH, Rouzan SS, Talat NE, Reyad SM, Chébl P, et al. Cyclophilin c as a novel diagnostic and prognostic biomarker of coronary artery diseases. a systematic review and meta-analysis. Curr Probl Cardiol. 2023;48:101812.

PubMed 

Google Scholar
 

Yao Q, Li M, Yang H, Chai H, Fisher W, Chen C. Roles of cyclophilins in cancers and other organ systems. World J Surg. 2005;29:276–80.

PubMed 

Google Scholar
 

Zhang L, Liu Y, Zhou R, He B, Wang W, Zhang B. Cyclophilin d: guardian or executioner for tumor cells? Front Oncol. 2022;12:939588.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Piao M, Lee SH, Li Y, Choi J-K, Yeo C-Y, Lee KY. Cyclophilin E (CypE) functions as a positive regulator in osteoblast differentiation by regulating the transcriptional activity of Runx2. Cells. 2023;12:2549.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:163–78.

CAS 
PubMed 

Google Scholar
 

Rajan S, Yoon HS. Structural insights into plasmodium PPIases. Front Cell Infect Microbiol. 2022;12:931635.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992;357:695–7.

CAS 
PubMed 

Google Scholar
 

Jin L, Harrison SC. Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc Natl Acad Sci U S A. 2002;99:13522–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol. 2024;15:1417945.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Potenza M, Galat A, Minning T, Ruiz A, Duran R, Tarleton R, et al. Analysis of the Trypanosoma cruzi cyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology. 2006;132:867–82.

CAS 
PubMed 

Google Scholar
 

Liu C, von Brunn A, Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med Drug Discov. 2020;7:100056.

PubMed 
PubMed Central 

Google Scholar
 

Gavigan CS, Kiely SP, Hirtzlin J, Bell A. Cyclosporin-binding proteins of Plasmodium falciparum. Int J Parasitol. 2003;33:987–96.

CAS 
PubMed 

Google Scholar
 

Kucharski M, Wirjanata G, Nayak S, Boentoro J, Dziekan JM, Assisi C, et al. Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum. PLoS Pathog. 2023;19:e1011118.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chaurasiya A, Kumari G, Garg S, Shoaib R, Anam Z, Joshi N, et al. Targeting artemisinin-resistant malaria by repurposing the anti-hepatitis C virus drug alisporivir. Antimicrob Agents Chemother. 2022;66:e00392–22.

PubMed 
PubMed Central 

Google Scholar
 

Prakash P, Zeeshan M, Saini E, Muneer A, Khurana S, Kumar Chourasia B, et al. Human cyclophilin B forms part of a multi-protein complex during erythrocyte invasion by Plasmodium falciparum. Nat Commun. 2017;8:1548.

PubMed 
PubMed Central 

Google Scholar
 

Satchwell TJ, Wright KE, Haydn-Smith KL, Sanchez-Roman Teran F, Moura PL, Hawksworth J, et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements. Nat Commun. 2019;10:3806.

PubMed 
PubMed Central 

Google Scholar
 

Gavigan C, Shen M, Machado S, Bell A. Influence of the Plasmodium falciparum P-glycoprotein homologue 1 (pfmdr1 gene product) on the antimalarial action of cyclosporin. J Antimicrob Chemother. 2007;59:197–203.

CAS 
PubMed 

Google Scholar
 

Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.

CAS 
PubMed 

Google Scholar
 

Carraro R, Búa J, Ruiz A, Paulino M. Modelling and study of cyclosporin A and related compounds in complexes with a Trypanosoma cruzi cyclophilin. J Mol Graph Model. 2007;26:48–61.

CAS 
PubMed 

Google Scholar
 

Morales MA, Watanabe R, Dacher M, Chafey P, Osorio y Fortéa J, Scott DA, et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA. 2010;107:8381–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morales MA, Watanabe R, Laurent C, Lenormand P, Rousselle JC, Namane A, et al. Phosphoproteomic analysis of Leishmania donovani pro-and amastigote stages. Proteomics. 2008;8:350–63.

CAS 
PubMed 

Google Scholar
 

Yau WaiLok YW, Pescher P, MacDonald A, Hem S, Zander D, Retzlaff S, et al. The Leishmania donovani chaperone cyclophilin 40 is essential for intracellular infection independent of its stage-specific phosphorylation status. Mol Microbiol. 2014;93:80–97.

CAS 
PubMed 

Google Scholar
 

Santos-Gomes G, Rodrigues A, Teixeira F, Carreira J, Alexandre-Pires G, Carvalho S, et al. Immunization with the Leishmania infantum recombinant cyclophilin protein 1 confers partial protection to subsequent parasite infection and generates specific memory T cells. Vaccine. 2014;32:1247–53.

CAS 
PubMed 

Google Scholar
 

Yu Q, Huang X, Gong P, Zhang Q, Li J, Zhang G, et al. Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine. 2013;31:6065–71.

CAS 
PubMed 

Google Scholar
 

Gong P, Huang X, Yu Q, Li Y, Huang J, Li J, et al. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilin gene in BALB/c mice. Parasite Immunol. 2013;35:140–6.

CAS 
PubMed 

Google Scholar
 

Watanabe Costa R, da Silveira JF, Bahia D. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways. Front Microbiol. 2016;7:388.

PubMed 
PubMed Central 

Google Scholar
 

Tuo W, Feng X, Cao L, Vinyard B, Dubey J, Fetterer R, et al. Vaccination with Neospora caninum-cyclophilin and-profilin confers partial protection against experimental neosporosis-induced abortion in sheep. Vaccine. 2021;39:4534–44.

CAS 
PubMed 

Google Scholar
 

Fereig RM, Abdelbaky HH, Kuroda Y, Nishikawa Y. Critical role of TLR2 in triggering protective immunity with cyclophilin entrapped in oligomannose-coated liposomes against Neospora caninum infection in mice. Vaccine. 2019;37:937–44.

CAS 
PubMed 

Google Scholar
 

Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66:807–15.

CAS 
PubMed 

Google Scholar
 

Singh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem. 2019;11:1999–2018.

CAS 
PubMed 

Google Scholar
 

Su L-H, Lee GA, Huang Y-C, Chen Y-H, Sun C-H. Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol. 2007;156:124–35.

CAS 
PubMed 

Google Scholar
 

Chatellard-Gruaz D, Saurat J-H, Siegenthaler G. Differential expression of cyclophilin isoforms during keratinocyte differentiation. Biochem J. 1994;303:863–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, et al. Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75.

CAS 
PubMed 

Google Scholar
 

Colebrook A, Jenkins D, Lightowlers M. Anti-parasitic effect of cyclosporin A on Echinococcus granulosus and characterization of the associated cyclophilin protein. Parasitology. 2002;125:485–93.

CAS 
PubMed 

Google Scholar
 

Ortona E, Vaccari S, Margutti P, Delunardo F, Rigano R, Profumo E, et al. Immunological characterization of Echinococcus granulosus cyclophilin, an allergen reactive with IgE and IgG4 from patients with cystic echinococcosis. Clin Exp Immunol. 2002;128:124–30.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rakshit R, Bahl A, Arunima A, Pandey S, Tripathi D. Beyond protein folding: the pleiotropic functions of PPIases in cellular processes and microbial virulence. Biochem Biophys Acta. 2025;1869:130754.

CAS 

Google Scholar
 

Ma Z, Zhang W, Wu Y, Zhang M, Wang L, Wang Y, et al. Cyclophilin A inhibits A549 cell oxidative stress and apoptosis by modulating the PI3K/Akt/mTOR signaling pathway. 2021. Biosci Rep. https://doi.org/10.1042/BSR20203219.

Guo Y, Jiang M, Zhao X, Gu M, Wang Z, Xu S, et al. Cyclophilin A promotes non-small cell lung cancer metastasis via p38 MAPK. Thorac Cancer. 2018;9:120–8.

CAS 
PubMed 

Google Scholar
 

Prieto JH, Fischer E, Koncarevic S, Yates J, Becker K. Large-scale differential proteome analysis in Plasmodium falciparum under drug treatment. In: Parasite Genomics Protocols. New York: Springer; 2015.


Google Scholar
 

Dousti M, Manzano-Román R, Rashidi S, Barzegar G, Ahmadpour NB, Mohammadi A, et al. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets. Pathog Dis. 2021;79:ftaa071.

CAS 
PubMed 

Google Scholar
 

Lopes KF, Freire ML, Murta SMF, Oliveira E. Efficacy of vaccines based on chimeric or multiepitope antigens for protection against visceral leishmaniasis: a systematic review. PLoS Negl Trop Dis. 2024;18:e0012757.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mortazavidehkordi N, Fallah A, Abdollahi A, Kia V, Khanahmad H, Najafabadi ZG, et al. A lentiviral vaccine expressing KMP11-HASPB fusion protein increases immune response to Leishmania major in BALB/C. Parasitol Res. 2018;117:2265–73.

PubMed 

Google Scholar
 

Muruaga EJ, Briones G, Roset MS. Biochemical and functional characterization of Brucella abortus cyclophilins: so similar, yet so different. Front Microbiol. 2022;13:1046640.

PubMed 
PubMed Central 

Google Scholar