Wooszyk J, Haraf G, Okruszek A, Wereńska M, Teleszko M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish Goose varieties. Poult Sci. 2020;99:1216–24. https://doi.org/10.1016/j.psj.2019.10.026.


Google Scholar
 

Huang Z, Zhang J, Gu Y, Cai Z, Feng X, Yang C, et al. Research progress on inosine monophosphate deposition mechanism in chicken muscle. Crit Rev Food Sci Nutr. 2020;62:1062–78. https://doi.org/10.1080/10408398.2020.1833832.


Google Scholar
 

Cygan-Szczegielniak D, Maiorano G, Janicki B, Buzała M, Stasiak K, Stanek M, et al. Influence of rearing system and sex on carcass traits and meat quality of broiler chickens. J Appl Anim Res. 2019;47:333–8. https://doi.org/10.1080/09712119.2019.1634076.


Google Scholar
 

Kasperek K, Drabik K, Sofińska-Chmiel W, Karwowska M, Zięba G, Batkowska J. The sex impact on the technological and chemical characteristics of meat derived from the Polish native chicken breed. Sci Rep. 2023;13:6525. https://doi.org/10.1038/s41598-023-33430-6.


Google Scholar
 

Tůmová E, Chodová D, Skřivanová E, Laloučková K, Šubrtová-Salmonová H, Ketta M, et al. The effects of genotype, sex, and feeding regime on performance, carcasses characteristic, and microbiota in chickens. Poult Sci. 2021;100:760–4. https://doi.org/10.1016/j.psj.2020.11.047.


Google Scholar
 

Goo D, Kim JH, Choi HS, Park GH, Han GP, Kil DY. Effect of stocking density and sex on growth performance, meat quality, and intestinal barrier function in broiler chickens. Poult Sci. 2019;98:1153–60. https://doi.org/10.3382/ps/pey491.


Google Scholar
 

Cygan-Szczegielniak D, Bogucka J. Growth Performance, carcass characteristics and meat quality of organically reared broiler chickens depending on sex. Animals. 2021;11:3274. https://doi.org/10.3390/ani11113274.


Google Scholar
 

Daszkiewicz T, Janiszewski P. The effect of sex on the quality of meat from farmed pheasants (Phasianus colchicus). Anim Sci J. 2020;91:e13404. https://doi.org/10.1111/asj.13404.


Google Scholar
 

Kokoszyński D, Kotowicz M, Piwczyński D, Bernacki Z, Saleh M. Effects of feeding whole-grain triticale and sex on carcass and meat characteristics of common pheasants. Ital J Anim Sci. 2018;17:1–11. https://doi.org/10.1080/1828051X.2018.1443028.


Google Scholar
 

Śmiecińska K, Stępień A, Daszkiewicz T. The fatty acid profile and the quality of breast and leg muscles in female and male Pearl Gray Guinea fowl (Numida meleagris). Poult Sci. 2024;103:103385. https://doi.org/10.1016/j.psj.2023.103385.


Google Scholar
 

Zhang M, Ma X, Zhai Y, Zhang D, Sui L, Li W, et al. Comprehensive transcriptome analysis of LncRNAs reveals the role of LncAD in chicken intramuscular and abdominal adipogenesis. J Agric Food Chem. 2020;68:3678–88. https://doi.org/10.1021/acs.jafc.9b07405.


Google Scholar
 

Ou Z, Shi Y, Li Q, Wu Y, Chen F. Effects of sex on the muscle development and meat composition in Wuliangshan Black-Bone chickens. Anim (Basel). 2022;26(19):2565. https://doi.org/10.3390/ani12192565.


Google Scholar
 

Li J, Zhang D, Yin L, Li Z, Yu C, Du H, et al. Integration analysis of metabolome and transcriptome profiles revealed the age-dependent dynamic change in chicken meat. Food Res Int. 2022;156:111171. https://doi.org/10.1016/j.foodres.2022.111171.


Google Scholar
 

Liu L, Ren M, Yang Y, Chen Z. Characterization and phylogenetic analysis of the complete mitochondrial genome in Xiaoxiang chicken (Gallus Gallus domesticus). Mitochondrial DNA B Resour. 2020;5:699–700. https://doi.org/10.1080/23802359.2020.1715282.


Google Scholar
 

Połtowicz K, Doktor J. Effect of free-range Raising on performance, carcass attributes and meat quality of broiler chickens. Anim Sci Pap Rep. 2011;29:139–49. https://doi.org/10.1111/j.1740-0929.2010.00869.x.


Google Scholar
 

Maiorano G, Stadnicka K, Tavaniello S, Abiuso C, Bogucka J, Bednarczyk M. In Ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult Sci. 2017;96:511–8. https://doi.org/10.3382/ps/pew311.


Google Scholar
 

Kokoszyński D, Bernacki Z, Duszyński Ł. Body conformation, carcass composition and physicochemical and sensory properties of meat from pheasants of different origin. Czech J Anim Sci. 2012;57:115–24. https://doi.org/10.1016/j.anireprosci.2012.01.017.


Google Scholar
 

Sheremetieva ME, Anufriev KE, Khlebodarova TM, Kolchanov NA, Yanenko AS. Rational metabolic engineering of Corynebacterium glutamicum to create a producer of l-valine. Vavilovskii Zhurnal Genet Selektsii. 2022;26:743–57. https://doi.org/10.18699/VJGB-22-90.


Google Scholar
 

Mathews TP. Quantitation of glutathione and oxidized glutathione ratios from biological matrices using LC–MS/MS. Methods Mol Biol. 2023;2675:133–48. https://doi.org/10.1007/978-1-0716-3247-5_11.


Google Scholar
 

Draper CF, Duisters K, Weger B, Chakrabarti A, Harms AC, Brennan L, et al. Menstrual cycle rhythmicity: metabolic patterns in healthy women. Sci Rep. 2018;8:14568. https://doi.org/10.1038/s41598-018-32647-0.


Google Scholar
 

Shi D, Tan Q, Ruan J, Tian Z, Wang X, Liu J, et al. Aging-related markers in rat urine revealed by dynamic metabolic profiling using machine learning. Aging. 2021;13:14322–41. https://doi.org/10.18632/aging.203046.


Google Scholar
 

Wang J, Zhang ZK, Jiang FF, Qi BW, Ding N, Hnin SY, et al. Deciphering the biosynthetic mechanism of pelletierine in lycopodium alkaloid biosynthesis. Org Lett. 2020;22:8725–9. https://doi.org/10.1021/acs.orglett.0c03339.


Google Scholar
 

Odnoshivkina UG, Kuznetsova EA, Petrov AM. 25-Hydroxycholesterol as a signaling molecule of the nervous system. Biochem (Mosc). 2022;87:524–37. https://doi.org/10.1134/S0006297922060049.


Google Scholar
 

Li Q, Fan X, Lu W, Sun C, Pei Z, Zhang M, et al. Novel NPR2 gene mutations affect chondrocytes function via ER stress in short stature. Cells. 2022;11:1265. https://doi.org/10.3390/cells11081265.


Google Scholar
 

Huang J, Rao L, Zhang W, et al. Effect of crossbreeding and sex on slaughter performance and meat quality in Xingguo Gray Goose based on multiomics data analysis. Poult Sci. 2023;102(8):102753. https://doi.org/10.1016/j.psj.2023.102753.


Google Scholar
 

Asahi R, Tanaka K, Fujimi TJ, Kanzawa N, Nakajima S. Proline decreases the suppressive effect of histidine on food intake and fat accumulation. J Nutr Sci Vitaminol. 2016;62:277. https://doi.org/10.3177/jnsv.62.277.


Google Scholar
 

Moro J, Tomé D, Schmidely P, Demersay TC, Azzout-Marniche D. Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients. 2020;12:1414. https://doi.org/10.3390/nu12051414.


Google Scholar
 

Xiong X, Xu J, Yan X, Wu S, Ma J, Wang Z, et al. Gut Microbiome and serum metabolome analyses identify biomarkers associated with sexual maturity in quails. Poult Sci. 2023;102:102762. https://doi.org/10.1016/j.psj.2023.102762.


Google Scholar
 

Yu M, Jia HM, Zhou C, Yang Y, Sun LL, Zou ZM. Urinary and fecal metabonomics study of the protective effect of Chaihu-Shu-Gan-San on Antibiotic-Induced gut microbiota dysbiosis in rats. Sci Rep. 2017;7:46551. https://doi.org/10.1038/srep46551.


Google Scholar
 

Grønbæk-Thygesen M, Voutsinos V, Johansson KE, Schulze TK, Cagiada M, Pedersen L, et al. Deep mutational scanning reveals a correlation between degradation and toxicity of thousands of aspartoacylase variants. Nat Commun. 2024;15:4026. https://doi.org/10.1038/s41467-024-48481-0.


Google Scholar
 

Zhang L, Zhang Y, Zhang X, Li X, He M, Qiao S. Combining bioinformatics analysis and experiments to explore CARNS1 as a prognostic biomarker for breast cancer. Mol Genet Genomic Med. 2021;9:e1586. https://doi.org/10.1002/mgg3.1586.


Google Scholar
 

Munyaneza JP, Kim M, Cho E, Jang A, Choo HJ, Lee JH. Association of histamine-N-methyl transferase gene polymorphisms with carnosine content in red–brown Korean native chickens. Anim Biosci. 2024;37:1517–25. https://doi.org/10.5713/ab.23.0552.


Google Scholar
 

Tang C, Ke M, Yu X, Sun S, Luo X, Liu X, et al. GART functions as a novel methyltransferase in the RUVBL1/β-Catenin signaling pathway to promote tumor stemness in colorectal cancer. Adv Sci (Weinh). 2023;10:e2301264. https://doi.org/10.1002/advs.202301264.


Google Scholar
 

Li P, Yang Y, Ning B, Tian Y, Wang L, Zeng W, et al. Transcriptome analysis of multiple tissues and identification of tissue-specific genes in Lueyang black-bone chicken. Poult Sci. 2025;104(4):104986. https://doi.org/10.1016/j.psj.2025.104986.


Google Scholar
 

Huang Z, Cai Z, Zhang J, Gu Y, Wang J, Yang J, et al. Integrating proteomics and metabolomics to elucidate the molecular network regulating of inosine monophosphate-specific deposition in Jingyuan chicken. Poult Sci. 2023;102:103118. https://doi.org/10.1016/j.psj.2023.103118.


Google Scholar
 

Zhang J, Hu H, Mu T, Wang W, Yu B, Guo J, et al. Correlation analysis between AK1 mRNA expression and inosine monophosphate deposition in Jingyuan chickens. Anim (Basel). 2020;10:439. https://doi.org/10.3390/ani10030439.


Google Scholar
 

Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, et al. Recent developments of phosphodiesterase inhibitors: clinical trials, emerging indications and novel molecules. Front Pharmacol. 2022;13:1057083. https://doi.org/10.3389/fphar.2022.1057083.


Google Scholar
 

Pereira DA, Luizon MR, Palei AC, Tanus-Santos JE, Cavalli RC, Sandrim VC. Functional polymorphisms of NOS3 and GUCY1A3 affect both nitric oxide formation and association with hypertensive disorders of pregnancy. Front Genet. 2024;15:1293082. https://doi.org/10.3389/fgene.2024.1293082.


Google Scholar
 

Fernández JR, Sweet ES, Welsh WJ, Firestein BL. Identification of small molecule compounds with higher binding affinity to guanine deaminase (cypin) than guanine. Bioorg Med Chem. 2010;18:6748–55. https://doi.org/10.1016/j.bmc.2010.07.054.


Google Scholar
 

Bi B, Chen X, Huang S, Peng M, Gu W, Zhu H, et al. The first case of intellectual disability caused by novel compound heterozygosity for NUDT2 variants. BMC Pediatr. 2024;24:60. https://doi.org/10.1186/s12887-024-04542-3.


Google Scholar