Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484(7392):55–61.


Google Scholar
 

Kjærner-Semb E, Ayllon F, Furmanek T, Wennevik V, Dahle G, Niemelä E, et al. Atlantic salmon populations reveal adaptive divergence of immune related genes-a duplicated genome under selection. BMC Genomics. 2016;17(1):610.


Google Scholar
 

Zhang B, Xue D, Li Y, Liu J. RAD genotyping reveals fine-scale population structure and provides evidence for adaptive divergence in a commercially important fish from the Northwestern Pacific Ocean. PeerJ. 2019;7:e7242.


Google Scholar
 

Jian J, Yang L, Gan X, Wu B, Gao L, Zeng H, et al. Whole genome sequencing of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) provide novel insights into their evolution and speciation. Mol Ecol Resour. 2021;21(3):912–23.


Google Scholar
 

Li B, Chen L, Yan M, Zou X, Bai Y, Xue Y, et al. Intercross population study reveals that co-mutation of Mitfa genes in two subgenomes induces red skin color in common carp (Cyprinus carpio wuyuanensis). Zool Res. 2023;44(2):276.


Google Scholar
 

Richardson J. Report on the ichthyology of the seas of China and Japan. R. and JE Taylor; (M). .London, R. and J.E. Taylor. 18461787-1865. https://doi.org/10.5962/bhl.title.59530.

Zhang Q, Hong W, Yang S, Liu M. Discussion on the division of geographic populations for the large yellow croaker (Larimichthys crocea) (in Chinese). Fish Inform Strategy. 2011;26(2):3–8.


Google Scholar
 

Zhang K, Zhou Y, Song W, Jiang L, Yan X. Genome-wide Radseq reveals genetic differentiation of wild and cultured populations of large yellow croaker. Genes. 2023;14(7):1508.


Google Scholar
 

Hong Y, Geng J, Qiao S, Zhang Y, Ding L, Wang X, et al. Phosphorus fractions and matrix-bound phosphine in coastal surface sediments of the Southwest Yellow Sea. J Hazard Mater. 2010;181(1–3):556–64.


Google Scholar
 

Yang W, Zhou D. Research on the agglomeration level of china’s large yellow croaker industry (in Chinese). Mar Dev Manage. 2022;39(10):26–33.


Google Scholar
 

Hu Y. Historical evolution and current status analysis of the genetic resources of large yellow croaker (Larimichthys crocea) in the East China sea region (in Chinese). J Shaoxing University: Nat Sci Ed. 2006;26(1):49–53.


Google Scholar
 

Xu P, Ke Q, Su Y, Liu J, Zheng W. Current status and suggestions for the conservation and utilization of genetic resources of large yellow croaker (Larimichthys crocea) (in Chinese). J Fish China. 2022;46(04):674–82.


Google Scholar
 

Ministry of Agriculture and Rural Affairs. National Fishery Technology Extension Centre,China Society of Fisheries. China fishery statistical yearbook 2023.

Wang L, Shi X, Su Y, Meng Z, Lin H. Loss of genetic diversity in the cultured stocks of the large yellow croaker, Larimichthys crocea, revealed by microsatellites. Int J Mol Sci. 2012;13(5):5584–97.


Google Scholar
 

Li Z, Fang X, Chen J, Chang J, Lei G, Zhang G, Zhao B, Wang Z. Loss of the genetic diversity in cultivated populations of Pseudosciaena Crocea by AFLP. Oceanol Limnol Sin. 2009;40(4):446–50.


Google Scholar
 

Wang D, Wang J, Ding S, Su Y. Comparative studies on some genetic characteristics among four large yellow croaker (Pseudosciaena crocea) populations. Acta Oceanol Sin. 2007;1(4):148–55.


Google Scholar
 

Lei F, Chen M, Meng Y, Niu S, Wu R, Pan Y. Analysis of COI sequence variation in the wild and cultured populations of Larimichthys Crocea (in Chinese). Guangxi Sci. 2023;30(04):794–803.


Google Scholar
 

Zhou Z, Han K, Wu Y, Bai H, Ke Q, Pu F, et al. Genome-wide association study of growth and body-shape-related traits in large yellow croaker (Larimichthys crocea) using DdRAD sequencing. Mar Biotechnol. 2019;21(5):655–70.


Google Scholar
 

Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta. 2023;2(2):e107.


Google Scholar
 

Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021;108(10):1880–90.


Google Scholar
 

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. fly. 2012;6(2):80–92.


Google Scholar
 

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and vcftools. Bioinformatics. 2011;27(15):2156–8.


Google Scholar
 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.


Google Scholar
 

Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–95.


Google Scholar
 

Pickrell J, Pritchard J. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8(11): e1002967. https://doi.org/10.1371/journal.pgen.1002967.


Google Scholar
 

Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49(2):303–9.


Google Scholar
 

Hijmans RJ, Williams E, Vennes C, Hijmans MRJ. Package ‘geosphere’. Spherical Trigonometry. 2017;1(7):1–45.


Google Scholar
 

Goudet J, Jombart T, Kamvar Z, Archer E, Hardy O. Hierfstat: Estimation and tests of hierarchical F-statistics (0.5-7)[Package ‘hierfstat’]. Molecular Ecology Notes. 2020;27(1):1–10

Rousset F. Genetic differentiation and Estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145(4):1219–28.


Google Scholar
 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’hara R, Simpson G, Solymos P. vegan: Community Ecology Package. R package version 2.5-7. 2020. Preprint at. 2022:3.1–152.

Liu M, De Mitcheson YS. Profile of a fishery collapse: why mariculture failed to save the large yellow croaker. Fish Fish. 2008;9(3):219–42.


Google Scholar
 

Nishioka K, Daidoji T, Nakaya T. Downregulation of calcium-regulated heat stable protein 1 expression by low-temperature stimulation causes reduction of interferon-β expression and sensitivity to influenza viral infection. Virus Res. 2022;309:198659.


Google Scholar
 

Han Z, Guo X, Liu Q, Liu S, Zhang Z, Xiao S, et al. Whole-genome resequencing of Japanese whiting (Sillago japonica) provide insights into local adaptations. Zool Res. 2021;42(5):548.


Google Scholar
 

Boonanuntanasarn S, Jangprai A, Na-Nakorn U. Transcriptomic analysis of female and male gonads in juvenile snakeskin gourami (Trichopodus pectoralis). Sci Rep. 2020;10(1):5240.


Google Scholar
 

Chen T, Lin T, Li H, Lu T, Li J, Huang W, et al. Heat shock protein 40 (HSP40) in Pacific white shrimp (Litopenaeus vannamei): molecular cloning, tissue distribution and ontogeny, response to temperature, acidity/alkalinity and salinity stresses, and potential role in ovarian development. Front Physiol. 2018;9:1784.


Google Scholar
 

Xu Z, Jiang J, Chen Y. Study on low lethal temperature of different strains of Pseudosciaena Crocea (in Chinese). Journal of Ningbo University(Natural Sci Eng Edition). 2006;(04):462–4.

Cossins AR, Crawford DL. Fish as models for environmental genomics. Nat Rev Genet. 2005;6(4):324–33.


Google Scholar
 

Zhang Z, Lin W, He D, Wu Q, Cai C, Chen H, et al. Aquaculture environment changes fish behavioral adaptability directly or indirectly through personality traits: a case study. Rev Fish Biol Fish. 2023;33(4):1423–41.


Google Scholar
 

Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution. 2014;68(1):1–15.


Google Scholar
 

Chen B, Bai Y, Wang J, Ke Q, Zhou Z, Zhou T, et al. Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker. Mar Life Sci Technol. 2023;5(2):141–54.


Google Scholar
 

Liu B. Study on population genetic structure and local adaptation of small yellow croaker and Japanese eel (in Chinese) D). University of Chinese Academy of Sciences; 2017:35–61.

Sun C, Wei H, Chen X, Zhao Z, Du H, Song W, et al. ERBB3-rs2292239 as primary type 1 diabetes association locus among non-HLA genes in Chinese. Meta Gene. 2016;9:120–3.


Google Scholar
 

Wang H, Jin Y, Linga Reddy MP, Podolsky R, Liu S, Yang P, Bode B, Chip Reed J, Steed RD, Anderson SW. Genetically dependent ERBB3 expression modulates antigen presenting cell function and type 1 diabetes risk. PLoS. ONE. 2010;5(7):e11789.


Google Scholar
 

Murr R, Vaissiere T, Sawan C, Shukla V, Herceg Z. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene. 2007;26(37):5358–72.


Google Scholar
 

Suzuki T, Hirai Y, Uehara T, Ohga R, Kosaki K, Kawahara A. Involvement of the zebrafish trrap gene in craniofacial development. Sci Rep. 2021;11(1):24166.


Google Scholar
 

Mandic M, Todgham AE, Richards JG. Mechanisms and evolution of hypoxia tolerance in fish. Proc R Soc Lond B Biol Sci. 2009;276(1657):735–44.


Google Scholar
 

Zhang X, Wang Y. Studies on oxygen consumption rate and suffocation point of Pseudosciaena crocea fry. J Econ Anim. 2007;11(3):148–52.


Google Scholar
 

Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88(4):1474–80.


Google Scholar
 

Liu X, Cai X, Hu B, Mei Z, Zhang D, Ouyang G, et al. Forkhead transcription factor 3a (FOXO3a) modulates hypoxia signaling via up-regulation of the von Hippel-Lindau gene (VHL). J Biol Chem. 2016;291(49):25692–705.


Google Scholar
 

Rahman MS, Thomas P. Molecular cloning and characterization of two ARNT (ARNT-1 and ARNT‐2) genes in Atlantic croaker and their expression during coexposure to hypoxia and PCB77. Environ Toxicol. 2019;34(2):160–71.


Google Scholar
 

Seo K, Park J, Heo J, Jing K, Han J, Min K, et al. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene. 2015;34(11):1354–62.


Google Scholar
 

Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 2013;24(6):695–709.


Google Scholar
 

Bensellam M, Maxwell EL, Chan JY, Luzuriaga J, West PK, Jonas J-C, et al. Hypoxia reduces ER-to-Golgi protein trafficking and increases cell death by inhibiting the adaptive unfolded protein response in mouse beta cells. Diabetologia. 2016;59(7):1492–502.


Google Scholar