Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

PubMed 

Google Scholar
 

Tabár, L. et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 260, 658–663 (2011).

Article 
PubMed 

Google Scholar
 

Marmot, M. G. et al. The benefits and harms of breast cancer screening: an independent review. Lancet 380, 1778–1786 (2012).

Article 

Google Scholar
 

Miller-Kleinhenz, J. M. et al. Racial disparities in diagnostic delay among women with breast cancer. J. Am. Coll. Radiol. 18, 1384–1393 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ng, A. Y. et al. Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nat. Med. 29, 3044–3049 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eisemann, N. et al. Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nat. Med. 31, 917–924 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hernström, V. et al. Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit. Health 7, e175–e183 (2025).

Article 
PubMed 

Google Scholar
 

Salim, M. et al. AI-based selection of individuals for supplemental MRI in population-based breast cancer screening: the randomized ScreenTrustMRI trial. Nat. Med. 30, 2623–2630 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lauritzen, A. D. et al. Early indicators of the impact of using AI in mammography screening for breast cancer. Radiology 311, e232479 (2024).

Article 
PubMed 

Google Scholar
 

Dembrower, K., Crippa, A., Colón, E., Eklund, M. & Strand, F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 5, E703–E711 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Oberije, C. J. G. et al. Assessing artificial intelligence in breast screening with stratified results on 306 839 mammograms across geographic regions, age, breast density and ethnicity: A Retrospective Investigation Evaluating Screening (ARIES) study. BMJ Health Care Inform. 32, e101318 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Logan, J., Kennedy, P. J. & Catchpoole, D. A review of the machine learning datasets in mammography, their adherence to the FAIR principles and the outlook for the future. Sci. Data 10, 595 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Centers for Devices and Radiological Health MQSA national statistics. FDA https://www.fda.gov/radiation-emitting-products/mammography-information-patients/mqsa-national-statistics (2025).

Kim, J. G. et al. Impact of a categorical AI system for digital breast tomosynthesis on breast cancer interpretation by both general radiologists and breast imaging specialists. Radiol. Artif. Intell. 6, e230137 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kerlikowske, K. et al. Population attributable risk of advanced-stage breast cancer by race and ethnicity. JAMA Oncol. 10, 167–175 (2024).

Article 
PubMed 

Google Scholar
 

Sprague, B. L. et al. Assessment of radiologist performance in breast cancer screening using digital breast tomosynthesis vs digital mammography. JAMA Netw. Open 3, e201759 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lawson, M. B. et al. Multilevel factors associated with time to biopsy after abnormal screening mammography results by race and ethnicity. JAMA Oncol. 8, 1115–1126 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Destounis, S. V. Computer-aided detection and second reading utility and implementation in a high-volume breast clinic. Appl. Radiol. 33, 8–12 (2004).


Google Scholar
 

Alabousi, M. et al. Performance of digital breast tomosynthesis, synthetic mammography, and digital mammography in breast cancer screening: a systematic review and meta-analysis. J. Natl Cancer Inst. 113, 680–690 (2020).

Article 
PubMed Central 

Google Scholar
 

Liao, J. M. & Lee, C. I. Strategies for mitigating consequences of federal breast density notifications. JAMA Health Forum 4, e232801 (2023).

Article 
PubMed 

Google Scholar
 

Kressin, N. R., Slanetz, P. J. & Gunn, C. M. Ensuring clarity and understandability of the FDA’s breast density notifications. JAMA 329, 121–122 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mandelblatt, J. S. et al. Population simulation modeling of disparities in US breast cancer mortality. J. Natl Cancer Inst. Monogr. 2023, 178–187 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

DeSantis, C. E. et al. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J. Clin. 66, 31–42 (2016).

PubMed 

Google Scholar
 

Elmore, J. G. & Lee, C. I. Toward more equitable breast cancer outcomes. JAMA 331, 1896–1897 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Miglioretti, D. L. et al. Digital breast tomosynthesis: radiologist learning curve. Radiology 291, 34–42 (2019).

Article 
PubMed 

Google Scholar
 

Haslam, B., Kim, J. & Soresen, A. G. An AI-based safeguard process to reduce aggressive missed cancers in dense breasts at screening mammography. In Proc. 2023 San Antonio Breast Cancer Symposium 84 PO2-29–04 (AACR, 2024).

Breast Cancer Surveillance Consortium: Evaluating Screening Performance in Practice (National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, 2004).

D’Orsi, C. et al. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System (American College of Radiology, 2013).

Agresti, A. & Coull, B. A. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am. Stat. 52, 119–126 (1998).


Google Scholar
Â