Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

Article 
CAS 

Google Scholar
 

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

Article 

Google Scholar
 

Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, 3080–3091 (2021).

Article 

Google Scholar
 

Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

Article 

Google Scholar
 

Nakayama, Y. et al. Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Sci. Rep. 9, 16649 (2019).

Article 

Google Scholar
 

DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

Article 
CAS 

Google Scholar
 

Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).

Article 
CAS 

Google Scholar
 

IPCC Climate Change 2021: The Physical Science Basis (Univ. of Cambridge, 2021).

Rignot, E. Observations of grounding zones are the missing key to understand ice melt in Antarctica. Nat. Clim. Change 13, 1010–1013 (2023).

Article 

Google Scholar
 

Dinniman, M. S. et al. Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography 29, 144–153 (2016).

Article 

Google Scholar
 

Garabato, A. C. et al. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542, 219–222 (2017).

Article 
CAS 

Google Scholar
 

Friedrichs, D. M. et al. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. Commun. Earth Environ. 3, 140 (2022).

Hancock, C., Speer, K., Janout, M. & Boebel, O. Under ice-shelf eddy at the Stancomb–Wills ice tongue. J. Geophys. Res. Oceans 130, e2024JC021393 (2025).

Article 

Google Scholar
 

Su, Z., Wang, J., Klein, P., Thompson, A. F. & Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9, 775 (2018).

Article 

Google Scholar
 

Siegelman, L. et al. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13, 50–55 (2020).

Article 
CAS 

Google Scholar
 

Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).

Article 

Google Scholar
 

Horvat, C., Tziperman, E. & Campin, J. M. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43, 8083–8090 (2016).

Article 

Google Scholar
 

Manucharyan, G. E. & Thompson, A. F. Submesoscale sea ice-ocean interactions in marginal ice zones. J. Geophys. Res. Oceans 122, 9455–9475 (2017).

Article 

Google Scholar
 

Manucharyan, G. E. & Thompson, A. F. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nat. Commun. 13, 2147 (2022).

Gupta, M., Marshall, J., Song, H., Campin, J.-M. & Meneghello, G. Sea-ice melt driven by ice-ocean stresses on the mesoscale. J. Geophys. Res. Oceans 125, e2020JC016404 (2020).

Article 

Google Scholar
 

Gupta, M. & Thompson, A. F. Regimes of sea-ice floe melt: ice-ocean coupling at the submesoscales. J. Geophys. Res. Oceans 127, e2022JC018894 (2022).

Article 

Google Scholar
 

Fricker, H. A. et al. Antarctica in 2025: drivers of deep uncertainty in projected ice loss. Science 387, 601–609 (2025).

Article 
CAS 

Google Scholar
 

McWilliams, J. C. Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117 (2016).

Article 

Google Scholar
 

Shrestha, K., Manucharyan, G. E. & Nakayama, Y. Submesoscale variability and basal melting in ice shelf cavities of the Amundsen Sea. Geophys. Res. Lett. 51, e2023GL107029 (2024).

Article 

Google Scholar
 

Si, Y., Stewart, A. L., Silvano, A. & Garabato, A. C. N. Antarctic slope undercurrent and onshore heat transport driven by ice shelf melting. Sci. Adv. 10, eadl0601 (2024).

Article 

Google Scholar
 

Lozano, I., Devoy, R., May, W. & Andersen, U. Storminess and vulnerability along the atlantic coastlines of europe: analysis of storm records and of a greenhouse gases induced climate scenario. Mar. Geol. 210, 205–225 (2004).

Article 
CAS 

Google Scholar
 

Martzikos, N. T., Prinos, P. E., Memos, C. D. & Tsoukala, V. K. Key research issues of coastal storm analysis. Ocean Coastal Manage. 199, 105389 (2021).

Article 

Google Scholar
 

Dotto, T. S. et al. Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nat. Commun. 13, 7840 (2022).

Thomas, L. N., Tandon, A. & Mahadevan, A. Submesoscale processes and dynamics. Ocean Model. Eddy. Regime 177, 17–38 (2008).

Article 

Google Scholar
 

Gupta, M., Gürcan, E. & Thompson, A. F. Eddy-induced dispersion of sea ice floes at the marginal ice zone. Geophys. Res. Lett. 51, e2023GL105656 (2024).

Article 

Google Scholar
 

Ou, H. W. & Gordon, A. L. Spin-down of baroclinic eddies under sea ice. J. Geophys. Res. Oceans 91, 7623–7630 (1986).

Article 

Google Scholar
 

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

Article 
CAS 

Google Scholar
 

Bennetts, L. G. et al. Closing the loops on southern ocean dynamics: from the circumpolar current to ice shelves and from bottom mixing to surface waves. Rev. Geophys. 62, e2022RG000781 (2024).

Article 

Google Scholar
 

Terletska, K., Maderich, V. & Tobisch, E. Transformation of internal solitary waves at the edge of ice cover. Nonlinear Processes Geophys. 31, 207–217 (2024).

Article 

Google Scholar
 

Zhang, P. et al. Numerical simulations of internal solitary wave evolution beneath an ice keel. J. Geophys. Res. Oceans 127, e2020JC017068 (2022).

Article 

Google Scholar
 

Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

Article 
CAS 

Google Scholar
 

Park, T., Nakayama, Y. & Nam, S. H. Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting. Nat. Commun. 15, 2946 (2024).

Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).

Article 
CAS 

Google Scholar
 

Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

Article 

Google Scholar
 

Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).

Article 

Google Scholar
 

Duffy, G. M., Montiel, F., Purich, A. & Fraser, C. Emerging long-term trends and interdecadal cycles in antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e232195121 (2024).

Article 

Google Scholar
 

Poinelli, M., Nakayama, Y., Larour, E., Vizcaino, M. & Riva, R. Ice-front retreat controls on ocean dynamics under Larsen C Ice Shelf, Antarctica. Geophys. Res. Lett. 50, e2023GL104588 (2023).

Article 

Google Scholar
 

Dinh, A., Rignot, E., Mazloff, M. & Fenty, I. Southern ocean high-resolution (SOhi) modeling along the Antarctic ice sheet periphery. Geophys. Res. Lett. 51, e2023GL106377 (2024).

Article 

Google Scholar
 

St-Laurent, P., Klinck, J. M. & Dinniman, M. S. Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J. Geophys. Res. Oceans 120, 6718–6732 (2015).

Article 

Google Scholar
 

Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).

Rignot, E., Mouginot, J., Scheuchl, B. & Jeong, S. Changes in Antarctic ice sheet motion derived from satellite radar interferometry between 1995 and 2022. Geophys. Res. Lett. 49, e2022GL100141 (2022).

Article 

Google Scholar
 

Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2019).

Article 

Google Scholar
 

Losch, M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Oceans 113, C08043 (2008).

Article 

Google Scholar
 

Losch, M., Menemenlis, D., Campin, J. M., Heimbach, P. & Hill, C. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modell. 33, 129–144 (2010).

Article 

Google Scholar
 

Hellmer, H. H. & Olbers, D. J. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1, 325–336 (1989).

Article 

Google Scholar
 

Jenkins, A. A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. Oceans 96, 20671–20677 (1991).

Article 

Google Scholar
 

Holland, D. M. & Jenkins, A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

Article 

Google Scholar
 

Jenkins, A. et al. Observations beneath Pine Island Glacier in West-Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).

Article 
CAS 

Google Scholar
 

Zhang, H., Menemenlis, D. & Fenty, I. ECCO LLC270 Ocean-Ice State Estimate (MIT, 2018).

Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen sea continental shelves. Nat. Commun. 9, 3403 (2018).

Article 

Google Scholar
 

Holland, P. R., Bevan, S. L. & Luckman, A. J. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophys. Res. Lett. 50, e2023GL103088 (2023).

Article 

Google Scholar
 

Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S. & Crawford, A. Brief communication: Thwaites Glacier cavity evolution. Cryosphere 15, 3317–3328 (2021).

Article 

Google Scholar
 

Torres, H. S. et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions. J. Geophys. Res. Oceans 123, 8084–8105 (2018).

Article 

Google Scholar
 

Hoskins, B. J. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 100, 480–482 (1974).

Article 

Google Scholar
 

Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. Symmetric instability in the Gulf Stream. Deep Sea Res. Part II 91, 96–110 (2013).

Article 

Google Scholar
 

Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).

Article 

Google Scholar
 

DiGirolamo, N. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2 (2022).