Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, 3080–3091 (2021).
Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).
Nakayama, Y. et al. Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Sci. Rep. 9, 16649 (2019).
DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).
Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).
IPCC Climate Change 2021: The Physical Science Basis (Univ. of Cambridge, 2021).
Rignot, E. Observations of grounding zones are the missing key to understand ice melt in Antarctica. Nat. Clim. Change 13, 1010–1013 (2023).
Dinniman, M. S. et al. Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography 29, 144–153 (2016).
Garabato, A. C. et al. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542, 219–222 (2017).
Friedrichs, D. M. et al. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. Commun. Earth Environ. 3, 140 (2022).
Hancock, C., Speer, K., Janout, M. & Boebel, O. Under ice-shelf eddy at the Stancomb–Wills ice tongue. J. Geophys. Res. Oceans 130, e2024JC021393 (2025).
Su, Z., Wang, J., Klein, P., Thompson, A. F. & Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9, 775 (2018).
Siegelman, L. et al. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13, 50–55 (2020).
Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).
Horvat, C., Tziperman, E. & Campin, J. M. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43, 8083–8090 (2016).
Manucharyan, G. E. & Thompson, A. F. Submesoscale sea ice-ocean interactions in marginal ice zones. J. Geophys. Res. Oceans 122, 9455–9475 (2017).
Manucharyan, G. E. & Thompson, A. F. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nat. Commun. 13, 2147 (2022).
Gupta, M., Marshall, J., Song, H., Campin, J.-M. & Meneghello, G. Sea-ice melt driven by ice-ocean stresses on the mesoscale. J. Geophys. Res. Oceans 125, e2020JC016404 (2020).
Gupta, M. & Thompson, A. F. Regimes of sea-ice floe melt: ice-ocean coupling at the submesoscales. J. Geophys. Res. Oceans 127, e2022JC018894 (2022).
Fricker, H. A. et al. Antarctica in 2025: drivers of deep uncertainty in projected ice loss. Science 387, 601–609 (2025).
McWilliams, J. C. Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117 (2016).
Shrestha, K., Manucharyan, G. E. & Nakayama, Y. Submesoscale variability and basal melting in ice shelf cavities of the Amundsen Sea. Geophys. Res. Lett. 51, e2023GL107029 (2024).
Si, Y., Stewart, A. L., Silvano, A. & Garabato, A. C. N. Antarctic slope undercurrent and onshore heat transport driven by ice shelf melting. Sci. Adv. 10, eadl0601 (2024).
Lozano, I., Devoy, R., May, W. & Andersen, U. Storminess and vulnerability along the atlantic coastlines of europe: analysis of storm records and of a greenhouse gases induced climate scenario. Mar. Geol. 210, 205–225 (2004).
Martzikos, N. T., Prinos, P. E., Memos, C. D. & Tsoukala, V. K. Key research issues of coastal storm analysis. Ocean Coastal Manage. 199, 105389 (2021).
Dotto, T. S. et al. Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nat. Commun. 13, 7840 (2022).
Thomas, L. N., Tandon, A. & Mahadevan, A. Submesoscale processes and dynamics. Ocean Model. Eddy. Regime 177, 17–38 (2008).
Gupta, M., Gürcan, E. & Thompson, A. F. Eddy-induced dispersion of sea ice floes at the marginal ice zone. Geophys. Res. Lett. 51, e2023GL105656 (2024).
Ou, H. W. & Gordon, A. L. Spin-down of baroclinic eddies under sea ice. J. Geophys. Res. Oceans 91, 7623–7630 (1986).
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).
Bennetts, L. G. et al. Closing the loops on southern ocean dynamics: from the circumpolar current to ice shelves and from bottom mixing to surface waves. Rev. Geophys. 62, e2022RG000781 (2024).
Terletska, K., Maderich, V. & Tobisch, E. Transformation of internal solitary waves at the edge of ice cover. Nonlinear Processes Geophys. 31, 207–217 (2024).
Zhang, P. et al. Numerical simulations of internal solitary wave evolution beneath an ice keel. J. Geophys. Res. Oceans 127, e2020JC017068 (2022).
Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).
Park, T., Nakayama, Y. & Nam, S. H. Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting. Nat. Commun. 15, 2946 (2024).
Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).
Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).
Duffy, G. M., Montiel, F., Purich, A. & Fraser, C. Emerging long-term trends and interdecadal cycles in antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e232195121 (2024).
Poinelli, M., Nakayama, Y., Larour, E., Vizcaino, M. & Riva, R. Ice-front retreat controls on ocean dynamics under Larsen C Ice Shelf, Antarctica. Geophys. Res. Lett. 50, e2023GL104588 (2023).
Dinh, A., Rignot, E., Mazloff, M. & Fenty, I. Southern ocean high-resolution (SOhi) modeling along the Antarctic ice sheet periphery. Geophys. Res. Lett. 51, e2023GL106377 (2024).
St-Laurent, P., Klinck, J. M. & Dinniman, M. S. Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J. Geophys. Res. Oceans 120, 6718–6732 (2015).
Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).
Rignot, E., Mouginot, J., Scheuchl, B. & Jeong, S. Changes in Antarctic ice sheet motion derived from satellite radar interferometry between 1995 and 2022. Geophys. Res. Lett. 49, e2022GL100141 (2022).
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2019).
Losch, M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Oceans 113, C08043 (2008).
Losch, M., Menemenlis, D., Campin, J. M., Heimbach, P. & Hill, C. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modell. 33, 129–144 (2010).
Hellmer, H. H. & Olbers, D. J. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1, 325–336 (1989).
Jenkins, A. A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. Oceans 96, 20671–20677 (1991).
Holland, D. M. & Jenkins, A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).
Jenkins, A. et al. Observations beneath Pine Island Glacier in West-Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).
Zhang, H., Menemenlis, D. & Fenty, I. ECCO LLC270 Ocean-Ice State Estimate (MIT, 2018).
Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen sea continental shelves. Nat. Commun. 9, 3403 (2018).
Holland, P. R., Bevan, S. L. & Luckman, A. J. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophys. Res. Lett. 50, e2023GL103088 (2023).
Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S. & Crawford, A. Brief communication: Thwaites Glacier cavity evolution. Cryosphere 15, 3317–3328 (2021).
Torres, H. S. et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions. J. Geophys. Res. Oceans 123, 8084–8105 (2018).
Hoskins, B. J. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 100, 480–482 (1974).
Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. Symmetric instability in the Gulf Stream. Deep Sea Res. Part II 91, 96–110 (2013).
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).
DiGirolamo, N. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2 (2022).