DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022).
Trigo-Rodríguez, J. M., Rimola, A., Tanbakouei, S., Soto, V. C. & Lee, M. Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early Earth. Space Sci. Rev. 215, 18 (2019).
Alexander, C. M. O. ’D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Ann. Rev. Earth Planet. Sci. 40, 251–275 (2012).
McCubbin, F. M. & Barnes, J. J. Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019).
Ito, M. et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample. Nat. Astron. 6, 1163–1171 (2022).
Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn Acad. Ser. B 98, 227–282 (2022).
Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples. Science 379, eabn8671 (2022).
Yokoyama, T. et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science 379, eabn7850 (2022).
Yamaguchi, A. et al. Insight into multi-step geological evolution of C-type asteroids from Ryugu particles. Nat. Astron. 7, 398–405 (2023).
McCain, K. A. et al. Early fluid activity on Ryugu inferred by isotopic analyses of carbonates and magnetite. Nat. Astron. 7, 309–317 (2023).
Tang, H. et al. The oxygen isotopic composition of samples returned from asteroid Ryugu with implications for the nature of the parent planetesimal. Planet. Sci. J. 4, 144 (2023).
Sugita, S. et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364, eaaw0422 (2019).
Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top-shaped rubble pile. Science 364, 268–272 (2019).
Tachibana, S. et al. Pebbles and sand on asteroid (162173) Ryugu: in situ observation and particles returned to Earth. Science 375, 1011–1016 (2022).
Hayakawa, T., Shizuma, T. & Iizuka, T. Half-life of the nuclear cosmochronometer 176Lu measured with a windowless 4π solid angle scintillation detector. Commun. Phys. 6, 299 (2023).
Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib. Mineral. Petrol. 78, 279–297 (1981).
Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).
Scherer, E., Cameron, K. L. & Blichert-Toft, J. Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta 64, 3413–3432 (2000).
Bizzarro, M., Baker, J. A., Haack, H., Ulfbeck, D. & Rosing, M. Early history of Earth’s crust–mantle system inferred from hafnium isotopes in chondrites. Nature 421, 931–933 (2003).
Patchett, P. J., Vervoort, J. D., Söderlund, U. & Salters, V. J. Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet. Sci. Lett. 222, 29–41 (2004).
Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).
Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).
Tkalcec, B. J. et al. A comprehensive study of apatite grains in Ryugu rock fragments. Meteorit. Planet. Sci. 59, 2149–2165 (2024).
Morlok, A. et al. Brecciation and chemical heterogeneities of CI chondrites. Geochim. Cosmochim. Acta 70, 5371–5394 (2006).
Iizuka, T., Hibiya, Y., Yoshihara, S. & Hayakawa, T. Timescales of solar system formation based on Al–Ti isotope correlation by supernova ejecta. Astrophys. J. Lett. 979, L29 (2025).
Bizzarro, M., Connelly, J. N., Thrane, K. & Borg, L. E. Excess hafnium-176 in meteorites and the early Earth zircon record. Geochem. Geophys. Geosyst. 13, Q03002 (2012).
Albarède, F. et al. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochim. Cosmochim. Acta 70, 1261–1270 (2006).
Thrane, K., Connelly, J. N., Bizzarro, M. & Meyer, B. S. Origin of excess 176Hf in meteorites. Astrophys. J. 717, 861–867 (2010).
Iizuka, T., Yamaguchi, T., Hibiya, Y. & Amelin, Y. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth. Proc. Natl Acad. Sci. USA 112, 5331–5336 (2015).
Wimpenny, J., Amelin, Y. & Yin, Q.-Z. The Lu isotopic composition of achondrites: closing the case for accelerated decay of 176Lu. Astrophys. J. Lett. 812, L3 (2015).
Yin, Q.-Z., Lee, C. T. A. & Ott, U. Signatures of the s-process in presolar silicon carbide grains: barium through hafnium. Astrophy. J. 647, 676–684 (2006).
Qin, L., Carlson, R. W. & Alexander, C. M. O. ’D. Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim. Cosmochim. Acta 75, 7806–7828 (2011).
Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S. & Käppeler, F. The s-process in low-metallicity stars–II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 418, 284–319 (2011).
Torrano, Z. A. et al. Neodymium-142 deficits and samarium neutron stratigraphy of C-type asteroid (162173) Ryugu. Meteorit. Planet. Sci. 59, 1966–1982 (2024).
Sprung, P., Kleine, T. & Scherer, E. E. Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth Planet. Sci. Lett. 380, 77–87 (2013).
Bloch, E., Watkins, J. & Ganguly, J. Diffusion kinetics of lutetium in diopside and the effect of thermal metamorphism on Lu–Hf systematics in clinopyroxene. Geochim. Cosmochim. Acta 204, 32–51 (2017).
Debaille, V., Van Orman, J., Yin, Q.-Z. & Amelin, Y. The role of phosphates for the Lu–Hf chronology of meteorites. Earth Planet. Sci. Lett. 473, 52–61 (2017).
Bast, R. et al. Reconciliation of the excess 176Hf conundrum in meteorites: recent disturbances of the Lu–Hf and Sm–Nd isotope systematics. Geochim. Cosmochim. Acta 212, 303–323 (2017).
Maeda, R. et al. The effects of Antarctic alteration and sample heterogeneity on Sm–Nd and Lu–Hf systematics in H chondrites. Geochim. Cosmochim. Acta 305, 106–129 (2021).
Bast, R., Scherer, E. E. & Bischoff, A. The 176Lu–176Hf systematics of ALM-A: a sample of the recent Almahata Sitta meteorite fall. Geochem. Persp. Lett. 3, 45–54 (2017).
Yokoyama, T. et al. The elemental abundances of Ryugu: assessment of chemical heterogeneities and the nugget effect. Geochem. J. 59, 45–63 (2025).
Dauphas, N. & Pourmand, A. Thulium anomalies and rare earth element patterns in meteorites and Earth: nebular fractionation and the nugget effect. Geochim. Cosmochim. Acta 163, 234–261 (2015).
Ota, T. et al. The formation of a rubble pile asteroid: Insights from the asteroid Ryugu. Universe 9, 293 (2023).
Turner, S., McGee, L., Humayun, M., Creech, J. & Zanda, B. Carbonaceous chondrite meteorites experienced fluid flow within the past million years. Science 371, 164–167 (2021).
McSween, H. Y. Jr Are carbonaceous chondrites primitive or processed? A review. Rev. Geophys. 17, 1059–1078 (1979).
Young, E. D., Zhang, K. K. & Schubert, G. Conditions for pore water convection within carbonaceous chondrite parent bodies—implications for planetesimal size and heat production. Earth Planet. Sci. Lett. 213, 249–259 (2003).
Bland, P. A. et al. Why aqueous alteration in asteroids was isochemical: high porosity ≠ high permeability. Earth Planet. Sci. Lett. 287, 559–568 (2009).
Vacher, L. G. et al. Hydrogen in chondrites: influence of parent body alteration and atmospheric contamination on primordial components. Geochim. Cosmochim. Acta 281, 53–66 (2020).
Suttle, M. D., Folco, L., Genge, M. J. & Russell, S. S. Flying too close to the Sun—the viability of perihelion-induced aqueous alteration on periodic comets. Icarus 351, 113956 (2020).
Nishiizumi, K. et al. Exposure conditions of samples collected on Ryugu’s two touchdown sites determined by cosmogenic nuclides 10Be and 26Al. In 53rd Lunar and Planetary Science Conference 1777 (2022).
Okazaki, R. et al. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution. Science 379, eabo0431 (2022).
Grimm, R. E. & McSween, H. Y. Jr Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–280 (1989).
Campins, H. et al. Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010).
Rivkin, A. S. & Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010).
Morota, T. et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: implications for surface evolution. Science 368, 654–659 (2020).
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Gautam, I., Yokoyama, T., Horan, M. F. & Carlson, R. W. Five-stage multielement separation procedure: a unique and essential tool for the multi-isotopic analyses of precious (<30 mg) extraterrestrial materials. Geochem. J. 59, 64–83 (2025).
Bizzarro, M. et al. The magnesium isotope composition of samples returned from asteroid Ryugu. Astrophys. J. Lett. 958, L25 (2023).
Hopp, T. et al. Ryugu’s nucleosynthetic heritage from the outskirts of the Solar System. Sci. Adv. 8, eadd8141 (2022).
Yokoyama, T. et al. Water circulation in Ryugu asteroid affected the distribution of nucleosynthetic isotope anomalies in returned sample. Sci. Adv. 9, eadi7048 (2023).
Nakanishi, N. et al. Nucleosynthetic s-process depletion in Mo from Ryugu samples returned by Hayabusa2. Geochem. Persp. Lett. 28, 31–36 (2023).
Moynier, F. et al. The Solar System calcium isotopic composition inferred from Ryugu samples. Geochem. Persp. Lett. 24, 1–6 (2022).
Paquet, M. et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis. Nat. Astron. 7, 182–189 (2023).
Münker, C., Weyer, S., Scherer, E. & Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000183 (2001).
Wimpenny, J. B., Amelin, Y. & Yin, Q.-Z. Precise determination of the lutetium isotopic composition in rocks and minerals using multicollector ICPMS. Anal. Chem. 85, 11258–11264 (2013).
Yokoyama, T., Nagai, Y., Hinohara, Y. & Mori, T. Investigating the influence of non-spectral matrix effects in the determination of twenty-two trace elements in rock samples by ICP-QMS. Geostand. Geoanal. Res. 41, 221–242 (2016).
Thirlwall, M. F. & Anczkiewicz, R. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom. 235, 59–81 (2004).
Völkening, J., Köppe, M. & Heumann, K. G. Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. Int. J. Mass. Spectrom. Ion Proc. 107, 361–368 (1991).
Iizuka, T., Eggins, S. M., McCulloch, M. T., Kinsley, L. P. J. & Morimer, G. E. Precise and accurate determination of 147Sm/144Nd and 143Nd/144Nd in monazite using laser ablation-MC-ICPMS. Chem. Geol. 282, 45–57 (2011).
Akram, W., Schönbächler, M., Sprung, P. & Vogel, N. Zirconium–hafnium isotope evidence from meteorites for the decoupled synthesis of light and heavy neutron-rich nuclei. Astrophys. J. 777, 169 (2013).
Elfers, B.-M. et al. Variable distribution of s-process Hf and W isotope carriers in chondritic meteorites—evidence from 174Hf and 180W. Geochim. Cosmochim. Acta 239, 346–362 (2018).
Sprung, P., Scherer, E. E., Upadhyay, D., Leya, I. & Mezger, K. Non-nucleosynthetic heterogeneity in non-radiogenic stable Hf isotopes: Implications for early Solar System chronology. Earth Planet. Sci. Lett. 295, 1–11 (2010).
Chen, X. et al. Methodologies for 176Lu–176Hf analysis of zircon grains from the Moon and beyond. ACS Earth Space Chem. 8, 36–53 (2024).
Nyquist, L. E. et al. 146Sm–142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 59, 2817–2837 (1995).
Mughabghab, S. F. Atlas of Neutron Resonances Vol. 2 (Elsevier, 2018).
Otuka, N. et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 120, 272–276 (2014).
Barrat, J. A. et al. Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta 83, 79–92 (2012).
Beer, H., Walter, G., Macklin, R. L. & Patchett, P. J. Neutron capture cross sections and solar abundances of 160, 161Dy, 170, 171Yb, 175,176Lu, and 176, 177Hf for the s-process analysis of the radionuclide 176Lu. Phy. Rev. C 30, 464–478 (1984).
Lodders, K. Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).
Macke, R. J., Consolmagno, G. J. & Britt, D. T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 46, 1842–1862 (2011).
Tack, P. et al. Rare earth element identification and quantification in millimetre-sized Ryugu rock fragments from the Hayabusa2 space mission. Earth Planets Space 74, 146 (2022).
Shibuya, T. et al. Aqueous alteration in icy planetesimals: the effect of outward transport of gaseous hydrogen. Geochim. Cosmochim. Acta 374, 264–283 (2024).
Wolery, T. W. & Larek, R. L. Software User’s Manual EQ3/6, Version 8.0 (Sandia National Laboratories, 2003).
Helgeson, H. C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804 (1969).
Helgeson, H. C. & Kirkham, D. H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye–Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974).
Drummond, S. E. Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, Pennsylvania State Univ. (1981).
Johnson, J. W., Oelkers, E. H. & Helgeson, H. C. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992).
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. & Bird, D. K. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278-A, 1–229 (1978).
Shock, E. L. & Helgeson, H. C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988).
Shock, E. L., Helgeson, H. C. & Sverjensky, D. A. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183 (1989).
Shock, E. L. & Koretsky, C. M. Metal–organic complexes in geochemical processes: estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 1497–1532 (1995).
Shock, E. L., Sassani, D. C., Willis, M. & Sverjensky, D. A. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997).
Sverjensky, D. A., Shock, E. L. & Helgeson, H. C. Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997).
McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).
Zolotov, M. Y. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems. Icarus 220, 713–729 (2012).
Brearly, A. J. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 587–624 (Univ. Arizona Press, 2006).
Zolensky, M. E. et al. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochim. Cosmochim. Acta 61, 5099–5115 (1997).
Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999).
Zolensky, M., Barrett, R. & Browning, L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123–3148 (1993).
Cherniak, D. J. Rare earth element diffusion in apatite. Geochim. Cosmochim. Acta 64, 3871–3885 (2000).
Louvel, M., Etschmann, B., Guan, Q., Testemale, D. & Brugger, J. Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids. Nat. Commun. 13, 1456 (2022).
Rai, D., Xia, Y., Hess, N. J., Strachan, D. M. & McGrail, B. P. Hydroxo and chloro complexes/ion interaction of Hf4+ and the solubility product of HfO2(am). J. Solution Chem. 30, 949–967 (2001).
Fujiya, W. et al. Carbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryugu. Nat. Geosci. 16, 675–682 (2023).
Kita, N. T. et al. Disequilibrium oxygen isotope distribution among aqueously altered minerals in Ryugu asteroid returned samples. Meteorit. Planet. Sci. 59, 2097–2116 (2024).
Yoshimura, T. et al. Breunnerite grain and magnesium isotope chemistry reveal cation partitioning during aqueous alteration of asteroid Ryugu. Nat. Commun. 15, 6809 (2024).
Tsuchiyama, A. et al. Three-dimensional textures of Ryugu samples and their implications for the evolution of aqueous alteration in the Ryugu parent body. Geochim. Cosmochim. Acta 375, 146–172 (2024).
Postberg, F. et al. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493 (2023).
Iizuka, T. & Hayabusa2-initial-analysis chemistry team Repository: Late fluid flow in a primitive asteroid revealed by Lu–Hf isotopes in Ryugu [Dataset]. Zenodo https://doi.org/10.5281/zenodo.16462056 (2025).
Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).