Gross, D. J. The role of symmetry in fundamental physics. Proc. Natl Acad. Sci. USA 93, 14256–14259 (1996).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 15005 (2021).
Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012).
Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Chen, W. J., Özdemir, S. K., Zhao, G. M., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).
Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity–time symmetry breaking. Science 346, 972–975 (2014).
Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).
Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).
Zhang, X. Y. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).
Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Zhu, X. F., Ramezani, H., Shi, C. Z., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).
Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293–297 (2021).
Han, Y. C. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).
Wu, J. H., Artoni, M. & La Rocca, G. C. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014).
Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).
Konotop, V. V. & Zezyulin, D. A. Odd-time reversal symmetry induced by an anti-PT-symmetric medium. Phys. Rev. Lett. 120, 123902 (2018).
Azizi, P. et al. Lattice materials with topological states optimized on demand. Proc. Natl Acad. Sci. USA 122, e2506787122 (2025).
Qi, M. H. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).
Qi, M. H. et al. Observation of high-decay-rate topological corner states in diffusive thermal metamaterials. Phys. Rev. Lett. 135, 096604 (2025).
Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).
Xu, G. et al. Non-Hermitian chiral heat transport. Phys. Rev. Lett. 130, 266303 (2023).
Cao, P. C. et al.Observation of parity–time symmetry in diffusive systems. Sci. Adv. 10, eadn1746 (2024).
Xu, G. et al. Hydrodynamic moiré superlattice. Science 386, 1377–1383 (2024).
Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).
Xu, G. Q. et al. Observation of Weyl exceptional rings in thermal diffusion. Proc. Natl Acad. Sci. USA 119, e2110018119 (2022).
Xu, G. Q., Li, Y., Li, W., Fan, S. H. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).
Yang, F. B. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).
Zhu, C. L., Bamidele, E. A., Shen, X. Y., Zhu, G. M. & Li, B. W. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).
Liu, Z. F. et al. Topological thermal transport. Nat. Rev. Phys. 6, 554–565 (2024).
Jin, P. et al. Tunable liquid-solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).
Jin, P. et al. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 36, 2305791 (2024).
Li, Y., L. Xu & Qiu. C.-W. Thermal Metamaterials: Controlling the Flow of Heat (World Scientific, 2025).
Tirole, R. et al. Double-slit time diffraction at optical frequencies. Nat. Phys. 19, 999–1002 (2023).
Sapienza, R. Splitting light pulses. Nat. Photon. 19, 551–552 (2025).
Liu, Z. F. et al. Topology in thermal, particle, and plasma diffusion metamaterials. Chem. Rev. 125, 8655–8730 (2025).
Fan, C. Z., Wu, C.-L., Wang, Y., Wang, B. & Wang, J. Thermal metamaterials: from static to dynamic heat manipulation. Phys. Rep. 1077, 1–111 (2024).
Dai, G. L. et al. Controlling transient and coupled diffusion with pseudoconformal mapping. Proc. Natl Acad. Sci. USA 122, e2511708122 (2025).
Lei, M. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proc. Natl Acad. Sci. USA 121, e2410041121 (2024).
Tan, H. H. et al. Bioinspired energy-free temperature gradient regulator for significant enhancement of thermoelectric conversion efficiency. Proc. Natl Acad. Sci. USA 122, e2424421122 (2025).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).
Lei, M. et al. Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition. Nat. Phys. 21, 1196–1202 (2025).
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).