Gross, D. J. The role of symmetry in fundamental physics. Proc. Natl Acad. Sci. USA 93, 14256–14259 (1996).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 15005 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012).

Article 
ADS 
MathSciNet 

Google Scholar
 

Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

Article 
MathSciNet 

Google Scholar
 

Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

Article 
ADS 

Google Scholar
 

Chen, W. J., Özdemir, S. K., Zhao, G. M., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

Article 
ADS 

Google Scholar
 

Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity–time symmetry breaking. Science 346, 972–975 (2014).

Article 
ADS 

Google Scholar
 

Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

Article 
ADS 

Google Scholar
 

Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

Article 
ADS 

Google Scholar
 

Zhang, X. Y. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

Article 
ADS 

Google Scholar
 

Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

Article 
ADS 

Google Scholar
 

Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

Article 
ADS 

Google Scholar
 

El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

Article 

Google Scholar
 

Zhu, X. F., Ramezani, H., Shi, C. Z., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).


Google Scholar
 

Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293–297 (2021).

Article 
ADS 

Google Scholar
 

Han, Y. C. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).

Article 

Google Scholar
 

Wu, J. H., Artoni, M. & La Rocca, G. C. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014).

Article 
ADS 

Google Scholar
 

Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

Article 

Google Scholar
 

Konotop, V. V. & Zezyulin, D. A. Odd-time reversal symmetry induced by an anti-PT-symmetric medium. Phys. Rev. Lett. 120, 123902 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Azizi, P. et al. Lattice materials with topological states optimized on demand. Proc. Natl Acad. Sci. USA 122, e2506787122 (2025).

Article 
MathSciNet 

Google Scholar
 

Qi, M. H. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).

Article 

Google Scholar
 

Qi, M. H. et al. Observation of high-decay-rate topological corner states in diffusive thermal metamaterials. Phys. Rev. Lett. 135, 096604 (2025).

Article 
ADS 

Google Scholar
 

Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Xu, G. et al. Non-Hermitian chiral heat transport. Phys. Rev. Lett. 130, 266303 (2023).

Article 
ADS 

Google Scholar
 

Cao, P. C. et al.Observation of parity–time symmetry in diffusive systems. Sci. Adv. 10, eadn1746 (2024).

Article 

Google Scholar
 

Xu, G. et al. Hydrodynamic moiré superlattice. Science 386, 1377–1383 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).

Article 

Google Scholar
 

Xu, G. Q. et al. Observation of Weyl exceptional rings in thermal diffusion. Proc. Natl Acad. Sci. USA 119, e2110018119 (2022).

Article 
MathSciNet 

Google Scholar
 

Xu, G. Q., Li, Y., Li, W., Fan, S. H. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).

Article 
ADS 

Google Scholar
 

Yang, F. B. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

Article 
ADS 

Google Scholar
 

Zhu, C. L., Bamidele, E. A., Shen, X. Y., Zhu, G. M. & Li, B. W. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

Article 

Google Scholar
 

Liu, Z. F. et al. Topological thermal transport. Nat. Rev. Phys. 6, 554–565 (2024).

Article 

Google Scholar
 

Jin, P. et al. Tunable liquid-solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).

Jin, P. et al. Deep learning-assisted active metamaterials with heat-enhanced thermal transport. Adv. Mater. 36, 2305791 (2024).

Article 

Google Scholar
 

Li, Y., L. Xu & Qiu. C.-W. Thermal Metamaterials: Controlling the Flow of Heat (World Scientific, 2025).

Tirole, R. et al. Double-slit time diffraction at optical frequencies. Nat. Phys. 19, 999–1002 (2023).

Article 

Google Scholar
 

Sapienza, R. Splitting light pulses. Nat. Photon. 19, 551–552 (2025).

Article 
ADS 

Google Scholar
 

Liu, Z. F. et al. Topology in thermal, particle, and plasma diffusion metamaterials. Chem. Rev. 125, 8655–8730 (2025).

Article 

Google Scholar
 

Fan, C. Z., Wu, C.-L., Wang, Y., Wang, B. & Wang, J. Thermal metamaterials: from static to dynamic heat manipulation. Phys. Rep. 1077, 1–111 (2024).

Article 
MathSciNet 

Google Scholar
 

Dai, G. L. et al. Controlling transient and coupled diffusion with pseudoconformal mapping. Proc. Natl Acad. Sci. USA 122, e2511708122 (2025).

Article 

Google Scholar
 

Lei, M. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proc. Natl Acad. Sci. USA 121, e2410041121 (2024).

Article 

Google Scholar
 

Tan, H. H. et al. Bioinspired energy-free temperature gradient regulator for significant enhancement of thermoelectric conversion efficiency. Proc. Natl Acad. Sci. USA 122, e2424421122 (2025).

Article 

Google Scholar
 

Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

Article 

Google Scholar
 

Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

Article 

Google Scholar
 

Lei, M. et al. Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition. Nat. Phys. 21, 1196–1202 (2025).

Article 

Google Scholar
 

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

Article 
ADS 

Google Scholar