Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 2000).

Yeh, P. & Gu, C. Optics of Liquid Crystal Displays (Wiley, 2010).

Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

PubMed 

Google Scholar
 

Shapere, A. & Wilczek, F. Classical time crystals. Phys. Rev. Lett. 109, 160402 (2012).

PubMed 

Google Scholar
 

Wilczek, F. Superfluidity and space-time translation symmetry breaking. Phys. Rev. Lett. 111, 250402 (2013).

PubMed 

Google Scholar
 

Bruno, P. Impossibility of spontaneously rotating time crystals: a no-go theorem. Phys. Rev. Lett. 111, 070402 (2013).

PubMed 

Google Scholar
 

Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

PubMed 

Google Scholar
 

Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).


Google Scholar
 

Yao, N. Y. & Nayak, C. Time crystals in periodically driven systems. Phys. Today 71, 40–47 (2018).


Google Scholar
 

Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://doi.org/10.48550/arXiv.1910.10745 (2019).

Sacha, K. Time Crystals (Springer International Publishing, 2020).


Google Scholar
 

Guo, L. Phase Space Crystals: Condensed Matter in Dynamical Systems (IOP Publishing, 2021).

Zaletel, M. P. et al. Colloquium: quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

CAS 

Google Scholar
 

Sacha, K. Modeling spontaneous breaking of time-translation symmetry. Phys. Rev. A 91, 033617 (2015).


Google Scholar
 

Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

PubMed 

Google Scholar
 

Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

PubMed 

Google Scholar
 

Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017).

CAS 
PubMed 

Google Scholar
 

Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

CAS 
PubMed 

Google Scholar
 

Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a space-time crystal in a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018).

CAS 
PubMed 

Google Scholar
 

Liao, L., Smits, J., van der Straten, P. & Stoof, H. T. C. Dynamics of a space-time crystal in an atomic Bose-Einstein condensate. Phys. Rev. A 99, 013625 (2019).


Google Scholar
 

Smits, J., Stoof, H. T. C. & van der Straten, P. Spontaneous breaking of a discrete time-translation symmetry. Phys. Rev. A 104, 023318 (2021).

CAS 

Google Scholar
 

Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

PubMed 

Google Scholar
 

Keßler, H. et al. Observation of a dissipative time crystal. Phys. Rev. Lett. 127, 043602 (2021).

PubMed 

Google Scholar
 

Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Taheri, H., Matsko, A. B., Herr, T. & Sacha, K. Dissipative discrete time crystals in a pump-modulated Kerr microcavity. Commun. Phys. 5, 159 (2022).


Google Scholar
 

Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

CAS 
PubMed 

Google Scholar
 

Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

CAS 
PubMed 

Google Scholar
 

Liu, T., Ou, J.-Y., MacDonald, K. F. & Zheludev, N. I. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

CAS 

Google Scholar
 

Chen, Y.-H. & Zhang, X. Realization of an inherent time crystal in a dissipative many-body system. Nat. Commun. 14, 6161 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, X. et al. Dissipative time crystal in a strongly interacting Rydberg gas. Nat. Phys. 20, 1389–1394 (2024).

CAS 

Google Scholar
 

Greilich, A. et al. Robust continuous time crystal in an electron–nuclear spin system. Nat. Phys. 20, 631–636 (2024).

CAS 

Google Scholar
 

Carraro-Haddad, I. et al. Solid-state continuous time crystal in a polariton condensate with a built-in mechanical clock. Science 384, 995–1000 (2024).

CAS 
PubMed 

Google Scholar
 

Yi, Y., Farrow, M. J., Korblova, E., Walba, D. M. & Furtak, T. E. High-sensitivity aminoazobenzene chemisorbed monolayers for photoalignment of liquid crystals. Langmuir 25, 997–1003 (2009).

CAS 
PubMed 

Google Scholar
 

Landau, L. D. & Lifshitz, E. M. Statistical Physics (Elsevier, 2013).

de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, 1993).

Reichhardt, C., Reichhardt, C. J. O. & Milošević, M. V. Statics and dynamics of skyrmions interacting with disorder and nanostructures. Rev. Mod. Phys. 94, 035005 (2022).

CAS 

Google Scholar
 

Smalyukh, I. I. Review: knots and other new topological effects in liquid crystals and colloids. Rep. Prog. Phys. 83, 106601 (2020).

PubMed 

Google Scholar
 

Zhao, H., Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19, 451–459 (2023).

CAS 

Google Scholar
 

Mundoor, H., Senyuk, B. & Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 352, 69–73 (2016).

CAS 
PubMed 

Google Scholar
 

Xu, S. & Wu, C. Space-time crystal and space-time group. Phys. Rev. Lett. 120, 096401 (2018).

CAS 
PubMed 

Google Scholar
 

Gallego-Gómez, F., del Monte, F. & Meerholz, K. Optical gain by a simple photoisomerization process. Nat. Mater. 7, 490–497 (2008).

PubMed 

Google Scholar
 

Brener, E. A. & Marchenko, V. I. Nonlinear theory of dislocations in smectic crystals: an exact solution. Phys. Rev. E 59, R4752–R4753 (1999).

CAS 

Google Scholar
 

Sohn, H. R. O. & Smalyukh, I. I. Electrically powered motions of toron crystallites in chiral liquid crystals. Proc. Natl Acad. Sci. USA 117, 6437–6445 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Prigogine, I. Time, structure, and fluctuations. Science 201, 777–785 (1978).

CAS 
PubMed 

Google Scholar
 

Zhang, R. et al. Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nat. Mater. 20, 875–882 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, H., Malomed, B. A. & Smalyukh, I. I. Topological solitonic macromolecules. Nat. Commun. 14, 4581 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, Y.-H. et al. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 3, 79–88 (2017).


Google Scholar
 

Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).


Google Scholar
 

Lyubarov, M. et al. Amplified emission and lasing in photonic time crystals. Science 377, 425–428 (2022).

CAS 
PubMed 

Google Scholar
 

Chang, T. et al. Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification. Chem. Eng. J. 446, 136630 (2022).

CAS 

Google Scholar
 

Huang, W. & Mow, W. H. PiCode: 2D barcode with embedded picture and ViCode: 3D barcode with embedded video. In Proc. 19th Annual International Conference on Mobile Computing & Networking 139–142 (ACM, 2013).

Chang, S. et al. Electrical tuning of branched flow of light. Nat. Commun. 15, 197 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photon. 16, 454–461 (2022).

CAS 

Google Scholar
 

Martinez, A., Mireles, H. C. & Smalyukh, I. I. Large-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayers. Proc. Natl Acad. Sci. USA 108, 20891–20896 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Lett. 35, 3447–3449 (2010).

CAS 
PubMed 

Google Scholar
Â