Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).
Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2022).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).
Oishi, E., Fujii, Y. & Koreeda, A. Selective observation of enantiomeric chiral phonons in α-quartz. Phys. Rev. B 109, 104306 (2024).
Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688–1693 (2022).
Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).
Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).
Ohe, K. et al. Chirality-induced selectivity of phonon angular momenta in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).
Schaack, G. Magnetic-field dependent phonon states in paramagnetic CeF3. Solid State Commun. 17, 505–509 (1975).
Schaack, G. Observation of circularly polarized phonon states in an external magnetic field. J. Phys. C: Solid State Phys. 9, L297 (1976).
Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991–5996 (2020).
Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).
Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).
Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Hernandez, F. G. G. et al. Observation of interplay between phonon chirality and electronic band topology. Sci. Adv. 9, eadj4074 (2023).
Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintronics 2, 19 (2024).
Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).
Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).
Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).
Rothschild, A. et al. Generation of spin currents by the orbital Hall effect in Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level. Phys. Rev. B 106, 144415 (2022).
Xu, Y. et al. Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments. Nat. Commun. 15, 2043 (2024).
Go, D. et al. Orbital pumping by magnetization dynamics in ferromagnets. Phys. Rev. B 111, L140409 (2025).
Komiyama, H. & Murakami, S. Universal features of canonical phonon angular momentum without time-reversal symmetry. Phys. Rev. B 103, 214302 (2021).
Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).
Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. EPL 135, 37001 (2021).
Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).
Kikkawa, T. et al. Observation of nuclear-spin Seebeck effect. Nat. Commun. 12, 4356 (2021).
Zhong, J. et al. Abnormal phonon angular momentum due to off-diagonal elements in the density matrix induced by a temperature gradient. Phys. Rev. B 107, 125147 (2023).
Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).
Yokouchi, T., Ikeda, Y., Morimoto, T. & Shiomi, Y. Giant magnetochiral anisotropy in Weyl semimetal WTe2 induced by diverging Berry curvature. Phys. Rev. Lett. 130, 136301 (2023).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).
Niimi, Y. & Otani, Y. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review. Rep. Prog. Phys. 78, 124501 (2015).
Wang, H. L. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).
Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter 26, 343202 (2014).
Du, C., Wang, H., Yang, F. & Hammel, P. C. Systematic variation of spin-orbit coupling with d-orbital filling: large inverse spin Hall effect in 3d transition metals. Phys. Rev. B 90, 140407 (2014).
Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).
Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).
Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Wang, T.-C., Chen, T.-Y., Wu, C.-T., Yen, H.-W. & Pai, C.-F. Comparative study on spin-orbit torque efficiencies from W/ferromagnetic and W/ferrimagnetic heterostructures. Phys. Rev. Mater. 2, 014403 (2018).
Sui, X. et al. Giant enhancement of the intrinsic spin Hall conductivity in beta-tungsten via substitutional doping. Phys. Rev. B 96, 241105 (2017).
Anastassakis, E., Burstein, E., Maradudin, A. A. & Minnick, R. Morphic effects—III. Effects of an external magnetic field on the long wavelength optical phonons. J. Phys. Chem. Solids 33, 519–531 (1972).
Gonze, X., Charlier, J.-C., Allan, D. C. & Teter, M. P. Interatomic force constants from first principles: the case of α-quartz. Phys. Rev. B 50, 13035–13038 (1994).
Strauch, D. & Dorner, B. Lattice dynamics of alpha-quartz. I. Experiment. J. Phys. Condens. Matter 5, 6149 (1993).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).