Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2014).
Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).
Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).
Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Genco, A. et al. Femtosecond switching of strong light-matter interactions in microcavities with two-dimensional semiconductors. Nat. Commun. 16, 6490 (2025).
Vasa, P. & Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photon. 5, 2–23 (2018).
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
Gross, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).
Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).
Chevrier, K. et al. Organic exciton in strong coupling with long-range surface plasmons and waveguided modes. ACS Photon. 5, 80–84 (2018).
Timmer, D. et al. Plasmon mediated coherent population oscillations in molecular aggregates. Nat. Commun. 14, 8035 (2023).
Greten, L. et al. Strong coupling of two-dimensional excitons and plasmonic photonic crystals: microscopic theory reveals triplet spectra. ACS Photon. 11, 1396–1411 (2024).
Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).
de Abajo, F. J. G. et al. Roadmap for photonics with 2D materials. ACS Photon. https://doi.org/10.1021/acsphotonics.5c00353 (2025).
Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).
Katsch, F., Selig, M. & Knorr, A. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124, 257402 (2020).
Trovatello, C. et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).
Mapara, V. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 22, 1680–1687 (2022).
Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci. Appl. 11, 94 (2022).
Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photon. 6, 2832–2840 (2019).
Yang, J. et al. Ultrafast investigation of the strong coupling system between square Ag nanohole array and monolayer WS2. Nano Lett. 25, 3391–3397 (2025).
Wei, K. et al. Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities. Nat. Commun. 14, 5310 (2023).
Timmer, D. et al. Ultrafast coherent exciton couplings and many-body interactions in monolayer WS2. Nano Lett. 24, 8117–8125 (2024).
Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature. Adv. Opt. Mater. 11, 2203010 (2023).
Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).
Policht, V. R., Proscia, N. V. & Cunningham, P. D. Insight into exciton polaritons of two-dimensional transition metal dichalcogenides with time-resolved spectroscopy. MRS Commun. 15, 1–20 (2025).
Toffoletti, F. & Collini, E. Coherent phenomena in exciton–polariton systems. J. Phys. Mater. 8, 022002 (2025).
Takemura, N. et al. Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime. Phys. Rev. B 92, 235305 (2015).
Fresch, E. et al. Two-dimensional electronic spectroscopy. Nat. Rev. Methods Prim. 3, 84 (2023).
Li, H., Lomsadze, B., Moody, G., Smallwood, C. & Cundiff, S. Optical Multidimensional Coherent Spectroscopy (Oxford Univ. Press, 2023).
Mewes, L., Wang, M., Ingle, R. A., Börjesson, K. & Chergui, M. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).
Son, M. et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).
Russo, M. et al. Direct evidence of ultrafast energy delocalization between optically hybridized J-aggregates in a strongly coupled microcavity. Adv. Opt. Mater. 12, 2400821 (2024).
Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem. 7, 1092–1107 (2021).
Li, D. H. et al. Hybridized exciton-photon-phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett. 128, 087401 (2022).
Dhamija, S. & Son, M. Mapping the dynamics of energy relaxation in exciton–polaritons using ultrafast two-dimensional electronic spectroscopy. Chem. Phys. Rev. 5, 041309 (2024).
Shen, K., Sun, K., Gelin, M. F. & Zhao, Y. 2D electronic spectroscopy uncovers 2D materials: theoretical study of nanocavity-integrated monolayer semiconductors. J. Phys. Chem. Lett. 16, 3264–3273 (2025).
Mondal, M. E., Vamivakas, A. N., Cundiff, S. T., Krauss, T. D. & Huo, P. Polariton spectra under the collective coupling regime. II. 2D non-linear spectra. J. Chem. Phys. 162, 074110 (2025).
Gallego-Valencia, D., Mewes, L., Feist, J. & Sanz-Vicario, J. L. Coherent multidimensional spectroscopy in polariton systems. Phys. Rev. A 109, 063704 (2024).
Mondal, M. E. et al. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons. J. Chem. Phys. 159, 094102 (2023).
Finkelstein-Shapiro, D., Mante, P.-A., Balci, S., Zigmantas, D. & Pullerits, T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: a model for plexcitons. J. Chem. Phys. 158, 104104 (2023).
Huang, C., Bai, S. & Shi, Q. A theoretical model for linear and nonlinear spectroscopy of plexcitons. J. Chem. Theory Comput. 21, 3612–3624 (2025).
Quenzel, T. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano 16, 4693–4704 (2022).
Kumar, P., De, B., Tripathi, R. & Singh, R. Exciton-exciton interaction: a quantitative comparison between complimentary phenomenological models. Phys. Rev. B 109, 155423 (2024).
Conway, M. et al. Direct measurement of biexcitons in monolayer WS2. 2D Mater. 9, 021001 (2022).
Katsch, F., Selig, M. & Knorr, A. Theory of coherent pump–probe spectroscopy in monolayer transition metal dichalcogenides. 2D Mater. 7, 015021 (2019).
Purz, T. L. et al. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys. 156, 214704 (2022).
Greten, L., Salzwedel, R., Schutsch, D. & Knorr, A. Microscopic theory for a minimal oscillator model of exciton-plasmon coupling in hybrids of two-dimensional semiconductors and metal nanoparticles. Phys. Rev. B 111, 205438 (2025).
Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).
del Pino, J., Feist, J. & Garcia-Vidal, F. J. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015).
Chng, B. X. K. et al. Mechanism of molecular polariton decoherence in the collective light–matter couplings regime. J. Phys. Chem. Lett. 15, 11773–11783 (2024).
DelPo, C. A. et al. Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling. J. Phys. Chem. Lett. 11, 2667–2674 (2020).
Autry, T. M. et al. Excitation ladder of cavity polaritons. Phys. Rev. Lett. 125, 067403 (2020).
Büttner, S. et al. Probing plexciton dynamics with higher-order spectroscopy. J. Chem. Phys. 163, 044702 (2025).
Vasa, P. et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).
Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).
Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).
Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
Bange, J. P. et al. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Xu, C. et al. Ultrafast electronic relaxation dynamics of atomically thin MoS2 is accelerated by wrinkling. ACS Nano 17, 16682–16694 (2023).
Cadore, A. et al. Monolayer WS2 electro- and photo-luminescence enhancement by TFSI treatment. 2D Mater. 11, 025017 (2024).
Grupp, A. et al. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. J. Opt. 20, 014005 (2017).
Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).
Timmer, D., Lünemann, D. C., De Sio, A., Cerullo, G. & Lienau, C. Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump–probe geometry. J. Chem. Phys. 162, 12 (2025).
Palmieri, B., Abramavicius, D. & Mukamel, S. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130, 204512 (2009).
Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).
Timmer, D. et al. Dataset for ‘Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure’. Zenodo https://doi.org/10.5281/zenodo.17200209 (2025).