Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2014).

Article 
PubMed 

Google Scholar
 

Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

Article 

Google Scholar
 

Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

Article 
PubMed 

Google Scholar
 

Genco, A. et al. Femtosecond switching of strong light-matter interactions in microcavities with two-dimensional semiconductors. Nat. Commun. 16, 6490 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vasa, P. & Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photon. 5, 2–23 (2018).

Article 
CAS 

Google Scholar
 

Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gross, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

Article 
PubMed 

Google Scholar
 

Chevrier, K. et al. Organic exciton in strong coupling with long-range surface plasmons and waveguided modes. ACS Photon. 5, 80–84 (2018).

Article 
CAS 

Google Scholar
 

Timmer, D. et al. Plasmon mediated coherent population oscillations in molecular aggregates. Nat. Commun. 14, 8035 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greten, L. et al. Strong coupling of two-dimensional excitons and plasmonic photonic crystals: microscopic theory reveals triplet spectra. ACS Photon. 11, 1396–1411 (2024).

Article 
CAS 

Google Scholar
 

Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

de Abajo, F. J. G. et al. Roadmap for photonics with 2D materials. ACS Photon. https://doi.org/10.1021/acsphotonics.5c00353 (2025).

Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Katsch, F., Selig, M. & Knorr, A. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124, 257402 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Trovatello, C. et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mapara, V. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 22, 1680–1687 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci. Appl. 11, 94 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photon. 6, 2832–2840 (2019).

Article 
CAS 

Google Scholar
 

Yang, J. et al. Ultrafast investigation of the strong coupling system between square Ag nanohole array and monolayer WS2. Nano Lett. 25, 3391–3397 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Wei, K. et al. Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities. Nat. Commun. 14, 5310 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Timmer, D. et al. Ultrafast coherent exciton couplings and many-body interactions in monolayer WS2. Nano Lett. 24, 8117–8125 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature. Adv. Opt. Mater. 11, 2203010 (2023).

Article 
CAS 

Google Scholar
 

Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).

Article 
CAS 

Google Scholar
 

Policht, V. R., Proscia, N. V. & Cunningham, P. D. Insight into exciton polaritons of two-dimensional transition metal dichalcogenides with time-resolved spectroscopy. MRS Commun. 15, 1–20 (2025).

Article 
CAS 

Google Scholar
 

Toffoletti, F. & Collini, E. Coherent phenomena in exciton–polariton systems. J. Phys. Mater. 8, 022002 (2025).

Article 

Google Scholar
 

Takemura, N. et al. Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime. Phys. Rev. B 92, 235305 (2015).

Article 

Google Scholar
 

Fresch, E. et al. Two-dimensional electronic spectroscopy. Nat. Rev. Methods Prim. 3, 84 (2023).

Article 
CAS 

Google Scholar
 

Li, H., Lomsadze, B., Moody, G., Smallwood, C. & Cundiff, S. Optical Multidimensional Coherent Spectroscopy (Oxford Univ. Press, 2023).

Mewes, L., Wang, M., Ingle, R. A., Börjesson, K. & Chergui, M. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).

Article 

Google Scholar
 

Son, M. et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Russo, M. et al. Direct evidence of ultrafast energy delocalization between optically hybridized J-aggregates in a strongly coupled microcavity. Adv. Opt. Mater. 12, 2400821 (2024).

Article 
CAS 

Google Scholar
 

Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem. 7, 1092–1107 (2021).

Article 
CAS 

Google Scholar
 

Li, D. H. et al. Hybridized exciton-photon-phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett. 128, 087401 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Dhamija, S. & Son, M. Mapping the dynamics of energy relaxation in exciton–polaritons using ultrafast two-dimensional electronic spectroscopy. Chem. Phys. Rev. 5, 041309 (2024).

Article 
CAS 

Google Scholar
 

Shen, K., Sun, K., Gelin, M. F. & Zhao, Y. 2D electronic spectroscopy uncovers 2D materials: theoretical study of nanocavity-integrated monolayer semiconductors. J. Phys. Chem. Lett. 16, 3264–3273 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Mondal, M. E., Vamivakas, A. N., Cundiff, S. T., Krauss, T. D. & Huo, P. Polariton spectra under the collective coupling regime. II. 2D non-linear spectra. J. Chem. Phys. 162, 074110 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Gallego-Valencia, D., Mewes, L., Feist, J. & Sanz-Vicario, J. L. Coherent multidimensional spectroscopy in polariton systems. Phys. Rev. A 109, 063704 (2024).

Article 
CAS 

Google Scholar
 

Mondal, M. E. et al. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons. J. Chem. Phys. 159, 094102 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Finkelstein-Shapiro, D., Mante, P.-A., Balci, S., Zigmantas, D. & Pullerits, T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: a model for plexcitons. J. Chem. Phys. 158, 104104 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Huang, C., Bai, S. & Shi, Q. A theoretical model for linear and nonlinear spectroscopy of plexcitons. J. Chem. Theory Comput. 21, 3612–3624 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Quenzel, T. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano 16, 4693–4704 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kumar, P., De, B., Tripathi, R. & Singh, R. Exciton-exciton interaction: a quantitative comparison between complimentary phenomenological models. Phys. Rev. B 109, 155423 (2024).

Article 
CAS 

Google Scholar
 

Conway, M. et al. Direct measurement of biexcitons in monolayer WS2. 2D Mater. 9, 021001 (2022).

Article 

Google Scholar
 

Katsch, F., Selig, M. & Knorr, A. Theory of coherent pump–probe spectroscopy in monolayer transition metal dichalcogenides. 2D Mater. 7, 015021 (2019).

Article 

Google Scholar
 

Purz, T. L. et al. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys. 156, 214704 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Greten, L., Salzwedel, R., Schutsch, D. & Knorr, A. Microscopic theory for a minimal oscillator model of exciton-plasmon coupling in hybrids of two-dimensional semiconductors and metal nanoparticles. Phys. Rev. B 111, 205438 (2025).

Article 
CAS 

Google Scholar
 

Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

del Pino, J., Feist, J. & Garcia-Vidal, F. J. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015).

Article 

Google Scholar
 

Chng, B. X. K. et al. Mechanism of molecular polariton decoherence in the collective light–matter couplings regime. J. Phys. Chem. Lett. 15, 11773–11783 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DelPo, C. A. et al. Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling. J. Phys. Chem. Lett. 11, 2667–2674 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Autry, T. M. et al. Excitation ladder of cavity polaritons. Phys. Rev. Lett. 125, 067403 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Büttner, S. et al. Probing plexciton dynamics with higher-order spectroscopy. J. Chem. Phys. 163, 044702 (2025).

Article 
PubMed 

Google Scholar
 

Vasa, P. et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).

Article 
PubMed 

Google Scholar
 

Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bange, J. P. et al. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).

Article 
CAS 

Google Scholar
 

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, C. et al. Ultrafast electronic relaxation dynamics of atomically thin MoS2 is accelerated by wrinkling. ACS Nano 17, 16682–16694 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Cadore, A. et al. Monolayer WS2 electro- and photo-luminescence enhancement by TFSI treatment. 2D Mater. 11, 025017 (2024).

Article 
CAS 

Google Scholar
 

Grupp, A. et al. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. J. Opt. 20, 014005 (2017).

Article 

Google Scholar
 

Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).

Article 
PubMed 

Google Scholar
 

Timmer, D., Lünemann, D. C., De Sio, A., Cerullo, G. & Lienau, C. Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump–probe geometry. J. Chem. Phys. 162, 12 (2025).

Article 

Google Scholar
 

Palmieri, B., Abramavicius, D. & Mukamel, S. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130, 204512 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

Timmer, D. et al. Dataset for ‘Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure’. Zenodo https://doi.org/10.5281/zenodo.17200209 (2025).