Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

Article 
ADS 
CAS 

Google Scholar
 

Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

Article 
ADS 
CAS 

Google Scholar
 

Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

Article 
ADS 
CAS 

Google Scholar
 

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).

Article 
ADS 

Google Scholar
 

Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

Article 
CAS 

Google Scholar
 

Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-Fock study of the moiré Hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide. Nat. Commun. 12, 642 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Phillips, P. W., Hussey, N. E. & Abbamonte, P. Stranger than metals. Science 377, eabh4273 (2022).

Article 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Hartnoll, S. A. & Mackenzie, A. P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 94, 041002 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep. 361, 267–417 (2002).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Tarruell, L. & Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C.R. Phys. 19, 365–393 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Jiang, Y.-F. & Jiang, H.-C. Topological superconductivity in the doped chiral spin liquid on the triangular lattice. Phys. Rev. Lett. 125, 157002 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Huang, Y. & Sheng, D. N. Topological chiral and nematic superconductivity by doping Mott insulators on triangular lattice. Phys. Rev. X 12, 031009 (2022).

CAS 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, F. et al. Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers. Nat. Phys. 21, 1217–1223 (2025).

Article 
CAS 

Google Scholar
 

Muñoz-Segovia D., Crépel V., Queiroz R. & Millis A. J. Twist-angle evolution of the intervalley-coherent antiferromagnet in twisted WSe2. Phys. Rev. B 112, 085111 (2025).

Bélanger, M., Fournier, J. & Sénéchal, D. Superconductivity in the twisted bilayer transition metal dichalcogenide WSe2: a quantum cluster study. Phys. Rev. B 106, 235135 (2022).

Article 
ADS 

Google Scholar
 

Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré t–J–U model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

Article 
CAS 

Google Scholar
 

Christos M., Bonetti, P. M. & Scheurer M. S. Approximate symmetries, insulators, and superconductivity in continuum-model description of twisted WSe2. Phys. Rev. Lett. 135, 046503 (2025).

Myerson-Jain, N. & Xu, C. Superconductor-insulator transition in the TMD moiré systems and the deconfined quantum critical point. Preprint at https://doi.org/10.48550/arXiv.2406.12971 (2024).

Tuo, C., Li, M.-R., Wu, Z., Sun, W. & Yao, H. Theory of topological superconductivity and antiferromagnetic correlated insulators in twisted bilayer WSe2. Nat. Commun. 16, 9525 (2025).

Akbar, W., Biborski, A., Rademaker, L. & Zegrodnik, M. Topological superconductivity with mixed singlet-triplet pairing in moiré transition metal dichalcogenide bilayers. Phys. Rev. B 110, 064516 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xie, F. et al. Superconductivity in twisted WSe2 from topology-induced quantum fluctuations. Phys. Rev. Lett. 134, 136503 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xie, F., Li, C., Cano, J. & Si, Q. Kondo-lattice phenomenology of twisted bilayer WSe2 from compact molecular orbitals of topological bands. Preprint at https://doi.org/10.48550/arXiv.2503.21769 (2025).

Chubukov, A. V. & Varma, C. M. Quantum criticality and superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 111, 014507 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Wu, Y.-M., Wu, Z. & Yao, H. Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Guerci, D., Kaplan, D., Ingham, J., Pixley, J. H. & Millis, A. J. Topological superconductivity from repulsive interactions in twisted WSe2. Preprint at https://doi.org/10.48550/arXiv.2408.16075 (2024).

Fischer, A. et al. Theory of intervalley-coherent AFM order and topological superconductivity in tWSe2. Phys. Rev. X 15, 041055 (2025).

Schrade, C. & Fu, L. Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Zhu, J., Chou, Y.-Z., Xie, M. & Das Sarma, S. Superconductivity in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 111, L060501 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Chien, T. R., Wang, Z. Z. & Ong, N. P. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3−xZnxO7-δ. Phys. Rev. Lett. 67, 2088–2091 (1991).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Uemura, Y. J. Condensation, excitation, pairing, and superfluid density in high-Tc superconductors: the magnetic resonance mode as a roton analogue and a possible spin-mediated pairing. J. Phys. Condens. Matter 16, S4515 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Ayres, J. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mourachkine, A. High-Temperature Superconductivity in Cuprates: The Nonlinear Mechanism and Tunneling Measurements (Kluwer Academic, 2002).

Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

Article 
ADS 
CAS 

Google Scholar