Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).
Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).
Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).
Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).
Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-Fock study of the moiré Hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).
Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide. Nat. Commun. 12, 642 (2021).
Phillips, P. W., Hussey, N. E. & Abbamonte, P. Stranger than metals. Science 377, eabh4273 (2022).
Hartnoll, S. A. & Mackenzie, A. P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 94, 041002 (2022).
Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep. 361, 267–417 (2002).
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Tarruell, L. & Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C.R. Phys. 19, 365–393 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).
Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).
Jiang, Y.-F. & Jiang, H.-C. Topological superconductivity in the doped chiral spin liquid on the triangular lattice. Phys. Rev. Lett. 125, 157002 (2020).
Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).
Huang, Y. & Sheng, D. N. Topological chiral and nematic superconductivity by doping Mott insulators on triangular lattice. Phys. Rev. X 12, 031009 (2022).
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).
Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).
Zhang, F. et al. Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers. Nat. Phys. 21, 1217–1223 (2025).
Muñoz-Segovia D., Crépel V., Queiroz R. & Millis A. J. Twist-angle evolution of the intervalley-coherent antiferromagnet in twisted WSe2. Phys. Rev. B 112, 085111 (2025).
Bélanger, M., Fournier, J. & Sénéchal, D. Superconductivity in the twisted bilayer transition metal dichalcogenide WSe2: a quantum cluster study. Phys. Rev. B 106, 235135 (2022).
Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré t–J–U model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).
Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).
Christos M., Bonetti, P. M. & Scheurer M. S. Approximate symmetries, insulators, and superconductivity in continuum-model description of twisted WSe2. Phys. Rev. Lett. 135, 046503 (2025).
Myerson-Jain, N. & Xu, C. Superconductor-insulator transition in the TMD moiré systems and the deconfined quantum critical point. Preprint at https://doi.org/10.48550/arXiv.2406.12971 (2024).
Tuo, C., Li, M.-R., Wu, Z., Sun, W. & Yao, H. Theory of topological superconductivity and antiferromagnetic correlated insulators in twisted bilayer WSe2. Nat. Commun. 16, 9525 (2025).
Akbar, W., Biborski, A., Rademaker, L. & Zegrodnik, M. Topological superconductivity with mixed singlet-triplet pairing in moiré transition metal dichalcogenide bilayers. Phys. Rev. B 110, 064516 (2024).
Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025).
Xie, F. et al. Superconductivity in twisted WSe2 from topology-induced quantum fluctuations. Phys. Rev. Lett. 134, 136503 (2025).
Xie, F., Li, C., Cano, J. & Si, Q. Kondo-lattice phenomenology of twisted bilayer WSe2 from compact molecular orbitals of topological bands. Preprint at https://doi.org/10.48550/arXiv.2503.21769 (2025).
Chubukov, A. V. & Varma, C. M. Quantum criticality and superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 111, 014507 (2025).
Wu, Y.-M., Wu, Z. & Yao, H. Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).
Guerci, D., Kaplan, D., Ingham, J., Pixley, J. H. & Millis, A. J. Topological superconductivity from repulsive interactions in twisted WSe2. Preprint at https://doi.org/10.48550/arXiv.2408.16075 (2024).
Fischer, A. et al. Theory of intervalley-coherent AFM order and topological superconductivity in tWSe2. Phys. Rev. X 15, 041055 (2025).
Schrade, C. & Fu, L. Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).
Zhu, J., Chou, Y.-Z., Xie, M. & Das Sarma, S. Superconductivity in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 111, L060501 (2025).
Chien, T. R., Wang, Z. Z. & Ong, N. P. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3−xZnxO7-δ. Phys. Rev. Lett. 67, 2088–2091 (1991).
Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).
Uemura, Y. J. Condensation, excitation, pairing, and superfluid density in high-Tc superconductors: the magnetic resonance mode as a roton analogue and a possible spin-mediated pairing. J. Phys. Condens. Matter 16, S4515 (2004).
Ayres, J. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).
Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).
Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).
Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).
Mourachkine, A. High-Temperature Superconductivity in Cuprates: The Nonlinear Mechanism and Tunneling Measurements (Kluwer Academic, 2002).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).
Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).