Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).

Article 
ADS 
CAS 

Google Scholar
 

Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

Article 
ADS 
PubMed 

Google Scholar
 

Vidmar, L. & Rigol, M. Generalized gibbs ensemble in integrable lattice models. J. Stat. Mech.: Theory Exp. 2016, 064007 (2016).

Article 
MathSciNet 

Google Scholar
 

Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

Article 
ADS 

Google Scholar
 

Davoudi, Z. et al. Quantum thermodynamics of nonequilibrium processes in lattice gauge theories. Phys. Rev. Lett. 133, 250402 (2024).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

CAS 

Google Scholar
 

Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal long-range order in floquet systems. Phys. Rev. B 94, 085112 (2016).

Article 
ADS 

Google Scholar
 

Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Phys. Mod. Phys. 95, 031001 (2023).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

Article 
ADS 
MathSciNet 

Google Scholar
 

Ponte, P., Papić, Z., Huveneers, F. mc & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. Phys. Rev. Lett. 120, 180602 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rovny, J., Blum, R. L. & Barrett, S. E. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. Phys. Rev. Lett. 120, 180603 (2018).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Rovny, J., Blum, R. L. & Barrett, S. E. 31p NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Phys. Rev. B 97, 184301 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a Space-Time Crystal in a Superfluid Quantum Gas. Phys. Rev. Lett. 121, 185301 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Autti, S., Eltsov, V. B. & Volovik, G. E. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal. Phys. Rev. Lett. 120, 215301 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, B. et al. Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms. Nat. Commun. 15, 9730 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. arXiv preprint arXiv:2403.16718 (2024).

Xiang, L. et al. Long-lived topological time-crystalline order on a quantum processor. Nature Communications 15, 8963 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wahl, T. B., Han, B. & Béri, B. Topologically ordered time crystals. Nature Communications 15, 9845 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fernandes, L., Tindall, J. & Sels, D. Nonperturbative decay of bipartite discrete time crystals. Phys. Rev. B 111, L100304 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Kimura, S. et al. Field-Induced Order-Disorder Transition in Antiferromagnetic baco2v2o8 Driven by a Softening of Spinon Excitation. Phys. Rev. Lett. 99, 087602 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Breunig, O. et al. Spin-\(\frac{1}{2}xxz\) chain system cs2cocl4 in a transverse magnetic field. Phys. Rev. Lett. 111, 187202 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).

Article 
CAS 

Google Scholar
 

Li, B., Van Dyke, J. S., Warren, A., Economou, S. E. & Barnes, E. Discrete time crystal in the gradient-field Heisenberg model. Phys. Rev. B 101, 115303 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Throckmorton, R. E. & Das Sarma, S. Effects of leakage on the realization of a discrete time crystal in a chain of singlet-triplet qubits. Phys. Rev. B 106, 245419 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Sarkar, S. & Dubi, Y. Time Crystals from Single-Molecule Magnet Arrays. ACS Nano 18, 27988–27996 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Greilich, A. et al. Robust continuous time crystal in an electron-nuclear spin system. Nat. Phys. 20, 631–636 (2024).

Article 
CAS 

Google Scholar
 

Shukla, R. K., Chotorlishvili, L., Mishra, S. K. & Iemini, F. Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields. Phys. Rev. B 111, 024315 (2025).

Article 
ADS 
CAS 

Google Scholar
 

De Roeck, W. & Huveneers, F. mc Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

Article 
ADS 

Google Scholar
 

Ippoliti, M., Kechedzhi, K., Moessner, R., Sondhi, S. & Khemani, V. Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum 2, 030346 (2021).

Article 
ADS 

Google Scholar
 

Sahay, R., Machado, F., Ye, B., Laumann, C. R. & Yao, N. Y. Emergent ergodicity at the transition between many-body localized phases. Phys. Rev. Lett. 126, 100604 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

Article 
CAS 

Google Scholar
 

Maskara, N. et al. Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving. Phys. Rev. Lett. 127, 090602 (2021).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Huang, B. Analytical theory of cat scars with discrete time-crystalline dynamics in Floquet systems. Phys. Rev. B 108, 104309 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Bao, Z. et al. Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors. Nat. Commun. 15, 8823 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411, 167998 (2019).

Article 
MathSciNet 
CAS 

Google Scholar
 

Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint arXiv:cond–mat/0407066 (2004).

Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Tindall, J. & Fishman, M. Gauging tensor networks with belief propagation. SciPost Phys. 15, 222 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

Article 
CAS 

Google Scholar
 

Zhuk, S., Robertson, N. F. & Bravyi, S. Trotter error bounds and dynamic multi-product formulas for hamiltonian simulation. Phys. Rev. Research 6, 033309 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Vazquez, A. C., Egger, D. J., Ochsner, D. & Woerner, S. Well-conditioned multi-product formulas for hardware-friendly hamiltonian simulation. Quantum 7, 1067 (2023).

Article 

Google Scholar
 

Robertson, N. F. et al. Tensor Network Enhanced Dynamic Multiproduct Formulas. PRX Quantum 6, 020360 (2025).

Article 
ADS 

Google Scholar
 

Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. of Phys. 326, 96–192 (2011).

Article 
ADS 
MathSciNet 

Google Scholar
 

Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes 5 (2018).

Hauschild, J. et al. Tensor network python (tenpy) version 1. SciPost Physics Codebases (2024).

Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of ibm’s eagle kicked ising experiment. PRX Quantum 5, 010308 (2024).

Article 
ADS 

Google Scholar
 

Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Fishman, M. T. ITensorNetworks.jl (2024).

Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases 4 (2022).