Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Carlson, D. E. & Wronski, C. R. Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

Article 
ADS 
CAS 

Google Scholar
 

Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Wang, W. H., Dong, C. & Shek, C. H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44, 45–89 (2004).

Article 

Google Scholar
 

Li, H. F. & Zheng, Y. F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 36, 1–20 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Esmaeil Zadeh, I. et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

Article 
ADS 
CAS 

Google Scholar
 

Warren, B. E. & Biscob, J. Fourier analysis of X-ray patterns of soda-silica glass. J. Am. Ceram. Soc. 21, 259–265 (1938).

Article 
CAS 

Google Scholar
 

Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952).

Article 
ADS 
CAS 

Google Scholar
 

Bernal, J. D. Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960).

Article 
ADS 

Google Scholar
 

Finney, J. L. Random packings and structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970).

Article 
ADS 
CAS 

Google Scholar
 

McGreevy, R. L. & Pusztai, L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1, 359–367 (1988).

Article 

Google Scholar
 

Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).

Article 
ADS 
CAS 

Google Scholar
 

Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

Article 
ADS 
CAS 

Google Scholar
 

Kelton, K. F. et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Cheng, Y. Q. & Ma, E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater Sci. 56, 379–473 (2011).

Article 
CAS 

Google Scholar
 

Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45A15 bulk metallic glass. Phys. Rev. Lett. 108, 195505 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Treacy, M. M. J. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yang, Y. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yuan, Y. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Miao, J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 637, 281–295 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Busch, R., Rez, P., Treacy, M. M. J. & Zuo, J.-M. Limit of atomic resolution tomography reconstruction of amorphous nanoparticles. Nature https://doi.org/10.1038/s41586-025-09924-w (2026).

Article 

Google Scholar
 

Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

Article 
PubMed 

Google Scholar
 

Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Goris, B. et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 15, 6996–7001 (2015).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhou, J. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tian, X. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 19, 867–873 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tian, X. Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface. Sci. Adv. 7, eabi6699 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moniri, S. Three-dimensional atomic structure and local chemical order of medium and high-entropy nanoalloys. Nature 624, 564–569 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jo, H. et al. Direct strain correlations at the single-atom level in three-dimensional core–shell interface structures. Nat. Commun. 13, 5957 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Z. et al. Probing the atomically diffuse interfaces in Pd@Pt core–shell nanoparticles in three dimensions. Nat. Commun. 14, 2934 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y. et al. Atomic-scale identification of the active sites of oxygen reduction nanocatalysts. Nat. Catal. 7, 796–806 (2024).

Article 
CAS 

Google Scholar
 

Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Pham, M., Yuan, Y., Rana, A., Osher, S. & Miao, J. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Sci Rep. 13, 5624 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weyland, M. & Midgley, P. A. Electron tomography. Mater. Today 7, 32–40 (2004).

Article 
CAS 

Google Scholar
 

Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

Article 
ADS 
CAS 

Google Scholar
 

Miao, J., Förster, F. & Levi, O. Equally sloped tomography with oversampling reconstruction. Phys. Rev. B 72, 052103 (2005).

Article 
ADS 

Google Scholar
 

Pryor, A. Jr et al. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci Rep. 7, 10409 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chang, D. J. et al. Ptychographic atomic electron tomography: Towards three-dimensional imaging of individual light atoms in materials. Phys. Rev. B 102, 174101 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Pelz, P. M. et al. Solving complex nanostructures with ptychographic atomic electron tomography. Nat. Commun. 14, 7906 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

Article 
ADS 
CAS 

Google Scholar
 

Chen, Z. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

O’Leary, C. M. et al. Three-dimensional structure of buried heterointerfaces revealed by multislice ptychography. Phys. Rev. Appl. 22, 014016 (2024).

Article 
ADS 

Google Scholar
 

Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rogers, S. S., Waigh, T. A., Zhao, X. & Lu, J. R. Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys. Biol. 4, 220 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982).

Article 
ADS 
MathSciNet 

Google Scholar
 

Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).

Article 
CAS 

Google Scholar
 

Goodman, P. & Moodie, A. F. Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr. A 30, 280–290 (1974).

Article 
ADS 

Google Scholar
 

Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transform of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

Article 
ADS 

Google Scholar
 

Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsai, E. H. R., Usov, I., Diaz, A., Menzel, A. & Guizar-Sicairos, M. X-ray ptychography with extended depth of field. Opt. Express 24, 29089–29108 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

University of California, Los Angeles. Supplementary-data-codes. Zenodo https://doi.org/10.5281/zenodo.17445110 (2025).