Eaton, D. F. Nonlinear optical materials. Science 253, 281–287 (1991).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Meng, J. Q. et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 373, 322–324 (1995).

Article 
ADS 

Google Scholar
 

Cyranoski, D. China’s crystal cache. Nature 457, 953–955 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Weinert, T. et al. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Samson, J. A. & Ederer, D. L. Vacuum Ultraviolet Spectroscopy (Academic Press, 2000).

Basting, D. & Marowsky, G. Excimer Laser Technology (Springer, 2005).

O’Shea, P. G. & Freund, H. P. Free-electron lasers: status and applications. Science 292, 1853–1858 (2001).

Article 
ADS 
PubMed 

Google Scholar
 

Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

Article 
ADS 

Google Scholar
 

Bloembergen, N. Nonlinear Optics (World Scientific, 1996).

Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

Eimerl, D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72, 95–139 (1987).

Article 
ADS 
CAS 

Google Scholar
 

Chen, C. T., Wu, B. C., Jiang, A. D. & You, G. M. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. B 18, 235–243 (1985).


Google Scholar
 

Chen, C. T. et al. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616–621 (1989).

Article 
ADS 
CAS 

Google Scholar
 

Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. New nonlinear optical crystal: cesium lithium borate. Appl. Phys. Lett. 67, 1818–1820 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Mirov, S. B., Fedorov, V. V., Boczar, B., Frost, R. & Pryor, B. All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO. Opt. Commun. 198, 403–406 (2001).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, Z. T. et al. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals. Adv. Photonics Nexus 3, 026012 (2024).

Article 

Google Scholar
 

Trabs, P., Noack, F., Aleksandrovsky, A. S., Zaitsev, A. I. & Petrov, V. Generation of coherent vacuum UV radiation in randomly quasi-phase-matched strontium tetraborate. In Proc. 2015 Conference on Lasers and Electro-Optics (CLEO) https://doi.org/10.1364/CLEO_SI.2015.STh3H.2 (IEEE, 2015).

Wu, B. C., Tang, D. Y., Ye, N. & Chen, C. T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105–109 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Dai, S. B. et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Phys. Lett. 13, 035401 (2016).

Article 
ADS 

Google Scholar
 

Chen, C. T. et al. Nonlinear Optical Borate Crystals: Principles and Applications (Wiley, 2012).

Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer, 2009).

Zhang, B. B., Shi, G. Q., Yang, Z. H., Zhang, F. F. & Pan, S. L. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56, 3916–3919 (2017).

Article 
CAS 

Google Scholar
 

Mutailipu, M., Zhang, M., Yang, Z. H. & Pan, S. L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 52, 791–801 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Shi, G. Q. et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139, 10645–10648 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, X. F. et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed. 56, 14119–14123 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Shepelev, Y. F., Bubnova, R. S., Filatov, S. K., Sennova, N. A. & Pilneva, N. A. LiB3O5 crystal structure at 20, 227 and 377 °C. J. Solid State Chem. 178, 2987–2997 (2005).

Article 
ADS 
CAS 

Google Scholar
 

Chen, C. T. et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B 26, 1519–1525 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Peng, G. et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57, 8968–8972 (2018).

Article 
CAS 

Google Scholar
 

Liu, H. N. et al. Cs3[(BOP)2(B3O7)3]: a deep-ultraviolet nonlinear optical crystal designed by optimizing matching of cation and anion groups. J. Am. Chem. Soc. 145, 12691–12700 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zou, G. H. et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 133, 20001–20007 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mutailipu, M. et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4. Nat. Photonics 17, 694–701 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Chen, C. T., Wang, G. L., Wang, X. Y. & Xu, Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9–25 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Li, R., Wang, L. R., Wang, X. Y., Wang, G. L. & Chen, C. T. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications. Appl. Opt. 55, 10423–10426 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Liu, H. J., Wang, F., Sun, L. X., Zheng, T. R. & Wang, F. R. Laser damage properties of LiB3O5 crystal surface under UV laser irradiation. Opt. Express 31, 30184–30193 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Berntsen, M. H., Gotberg, O. & Tjernberg, O. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 095113 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chang, Y. C., Xiong, B., Bross, D. H., Ruscic, B. & Ng, C. Y. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH4): determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH4 and CH4+. Phys. Chem. Chem. Phys. 19, 9592–9605 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Cao, W., Laurent, G., Ben-Itzhak, I. & Cocke, C. L. Identification of a previously unobserved dissociative ionization pathway in time-resolved photospectroscopy of the deuterium molecule. Phys. Rev. Lett. 114, 113001 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Wen, N. et al. Generation of a 177.3 nm VUV laser with high pulse energy by a KBBF crystal. Laser Phys. Lett. 17, 105001 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Chen, C. T., Wu, Y. C. & Li, R. K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 8, 65–91 (1989).

Article 

Google Scholar
 

Lei, B. H., Pan, S. L., Yang, Z. H., Cao, C. & Singh, D. J. Second harmonic generation susceptibilities from symmetry adapted Wannier functions. Phys. Rev. Lett. 125, 187402 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Li, F. M. et al. Covalently bonded fluorine optimizing deep-ultraviolet nonlinear optical performance of fluorooxoborates. Sci. Bull. 69, 1192–1196 (2024).

Article 
CAS 

Google Scholar
 

Technical Committee: ISO/TC 172/SC9. ICS: 31.260. Lasers and laser-related equipment — test methods for laser-induced damage threshold. Part 2: threshold determination. ISO 21254-2:2011. (International Organization for Standardization, 2011).

Leviton, D. B., Madison, T. J. & Petrone, P. III Simple refractometers for index measurements by minimum-deviation method from far ultraviolet to near infrared. Proc. SPIE 3425, 148–159 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Born, M. & Wolf, E. Principles of Optics 5th edn (Pergamon Press, 1975).

Maker, P., Terhune, R., Nisenoff, M. & Savage, C. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8, 21 (1962).

Article 
ADS 

Google Scholar
 

Jerphagnon, J. & Kurtz, S. K. Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41, 1667–1681 (1970).

Article 
ADS 

Google Scholar
 

Zhang, M. et al. Linear and nonlinear optical properties of K3B6O10Br single crystal: experiment and calculation. J. Phys. Chem. C 118, 11849–11856 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Caricato, M., Frisch, A., Hiscocks, J. & Frisch, M. J. Gaussian 09: IOps Reference (Gaussian, Inc., 2009).

Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Kresse, G. & Furthmuller, J. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Kresse, G. & Furthmuller, J. F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Article 
CAS 

Google Scholar
 

Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

Article 
ADS 
CAS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Aversa, C. & Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52, 14636 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, B. B. et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl. Phys. Lett. 106, 031906 (2015).

Article 
ADS 

Google Scholar
 

Marzari, N. et al. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

Article 
ADS 
CAS 

Google Scholar