Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).
Shekhter, A. et al. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ. Nature 498, 75–77 (2013).
Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).
Bourges, P., Bounoua, D. & Sidis, Y. Loop currents in quantum matter. Comptes Rendus. Physique 22, 7–31 (2021).
Murayama, H. et al. Diagonal nematicity in the pseudogap phase of HgBa2CuO4+δ. Nat. Commun. 10, 3282 (2019).
Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 75, 102501 (2012).
Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys 10, 409–429 (2019).
Ramshaw, B. J. et al. Broken rotational symmetry on the Fermi surface of a high-Tc superconductor. npj Quantum Mater. 2, 8 (2017).
Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).
LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).
Chan, M. K. et al. Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+δ. Proc. Natl Acad. Sci. USA 117, 9782–9786 (2020).
Kunisada, S. et al. Observation of small Fermi pockets protected by clean CuO2 sheets of a high-Tc superconductor. Science 369, 833–838 (2020).
Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
Kaul, R. K., Kolezhuk, A., Levin, M., Sachdev, S. & Senthil, T. Hole dynamics in an antiferromagnet across a deconfined quantum critical point. Phys. Rev. B 75, 235122 (2007).
Rice, T. M., Yang, K.-Y. & Zhang, F. C. A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates. Rep. Prog. Phys. 75, 016502 (2011).
Mascot, E. et al. Electronic spectra with paramagnon fractionalization in the single-band Hubbard model. Phys. Rev. B 105, 075146 (2022).
Reber, T. J. et al. The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ. Nat. Phys. 8, 606–610 (2012).
Norman, M. R., Kanigel, A., Randeria, M., Chatterjee, U. & Campuzano, J. C. Modeling the Fermi arc in underdoped cuprates. Phys. Rev. B 76, 174501 (2007).
Fang, Y. et al. Fermi surface transformation at the pseudogap critical point of a cuprate superconductor. Nat. Phys. 18, 558–564 (2022).
Musser, S., Chowdhury, D., Lee, P. A. & Senthil, T. Interpreting angle-dependent magnetoresistance in layered materials: application to cuprates. Phys. Rev. B 105, 125105 (2022).
Yamaji, K. On the angle dependence of the magnetoresistance in quasi-two-dimensional organic superconductors. J. Phys. Soc. Jpn. 58, 1520–1523 (1989).
Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys 63, 1111–1207 (2000).
Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5782 (2004).
Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).
Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).
Putilin, S. N., Antipov, E. V., Chmaissem, O. & Marezio, M. Superconductivity at 94 K in HgBa2Cu04+δ. Nature 362, 226–228 (1993).
Lewin, S. K. & Analytis, J. G. Angle-dependent magnetoresistance as a probe of Fermi surface warping in HgBa2CuO4+δ. Phys. Rev. B 98, 075116 (2018).
Grigoriev, P. D. Angular dependence of the Fermi surface cross-section area and magnetoresistance in quasi-two-dimensional metals. Phys. Rev. B 81, 205122 (2010).
Nam, M. S., Blundell, S. J., Ardavan, A., Symington, J. A. & Singleton, J. Fermi surface shape and angle-dependent magnetoresistance oscillations. J. Phys. Condens. Matter 13, 2271–2279 (2001).
Das, T. Q = 0 collective modes originating from the low-lying Hg-O band in superconducting HgBa2CuO4+δ. Phys. Rev. B 86, 054518 (2012).
Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Origin of the material dependence of Tc in the single-layered cuprates. Phys. Rev. B 85, 064501 (2012).
Goddard, P. A. et al. Angle-dependent magnetoresistance of the layered organic superconductor κ− (ET)2Cu(NCS)2: simulation and experiment. Phys. Rev. B 69, 174509 (2004).
Smith, M. F. & McKenzie, R. H. Fermi surface of underdoped cuprate superconductors from interlayer magnetoresistance: closed pockets versus open arcs. Phys. Rev. B 82, 172510 (2010).
Lebed, A. G. & Bagmet, N. N. Nonanalytical magnetoresistance, the third angular effect, and a method to investigate Fermi surfaces in quasi-two-dimensional conductors. Phys. Rev. B 55, R8654–R8657 (1997).
Vishik, I. M. et al. Angle-resolved photoemission spectroscopy study of HgBa2CuO4+δ. Phys. Rev. B 89, 195141 (2014).
Sreedhar, S. A. et al. Three interaction energy scales in the single-layer high-Tc cuprate HgBa2CuO4+δ. Phys. Rev. B 102, 205109 (2020).
Barišić, N. et al. Universal quantum oscillations in the underdoped cuprate superconductors. Nat. Phys. 9, 761–764 (2013).
Chan, M. K. et al. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor. Nat. Commun. 7, 12244 (2016).
Tabis, W. et al. Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4+δ. Phys. Rev. B 96, 134510 (2017).
Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).
Chan, M. K. et al. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+δ. Nat. Commun. 7, 10819 (2016).
Gannot, Y., Ramshaw, B. J. & Kivelson, S. A. Fermi surface reconstruction by a charge density wave with finite correlation length. Phys. Rev. B 100, 045128 (2019).
Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).
Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).
Yamamoto, A., Hu, W.-Z. & Tajima, S. Thermoelectric power and resistivity of HgBa2CuO4+δ over a wide doping range. Phys. Rev. B 63, 024504 (2000).
Zhao, X. et al. Crystal growth and characterization of the model high-temperature superconductor HgBa2CuO4+δ. Adv. Mater. 18, 3243–3247 (2006).
House, A. A. et al. Oscillatory magnetoresistance in the charge-transfer salt β″-BEDT-TTF2AuBr2 in magnetic fields up to 60 T: evidence for field-induced Fermi-surface reconstruction. Phys. Rev. B 53, 9127–9136 (1996).
Hill, S. Semiclassical description of cyclotron resonance in quasi-two-dimensional organic conductors: theory and experiment. Phys. Rev. B 55, 4931–4940 (1997).
Schofield, A. J. & Cooper, J. R. Quasilinear magnetoresistance in an almost two-dimensional band structure. Phys. Rev. B 62, 10779–10784 (2000).
Michon, B. et al. Thermodynamic signatures of quantum criticality in cuprate superconductors. Nature 567, 218–222 (2019).