Gottesman, D. An introduction to quantum error correction. Proc. Symp. Appl. Math. 58, 221–236 (2002).

Article 
MathSciNet 

Google Scholar
 

Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error. In Proc. Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’97 176–188 (Association for Computing Machinery, 1997).

Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207 (2008).

Article 
MathSciNet 

Google Scholar
 

Shor, P. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006).

MathSciNet 

Google Scholar
 

Reichardt, B. W. in Automata, Languages and Programming (eds Bugliesi, M. et al.) 60–61 (Springer, 2006).

Yamasaki, H. & Koashi, M. Time-efficient constant-space-overhead fault-tolerant quantum computation. Nat. Phys. 20, 247–253 (2024).

Article 

Google Scholar
 

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

Article 

Google Scholar
 

Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

Article 

Google Scholar
 

Acharya, R. et al. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2024).


Google Scholar
 

Gottesman, D. Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology (1997).

Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

Article 
ADS 

Google Scholar
 

Bravyi, S. & Kitaev, A. Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

Article 
ADS 
MathSciNet 

Google Scholar
 

Knill, E. Fault-tolerant postselected quantum computation: schemes. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0402171 (2004).

Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

Article 
ADS 

Google Scholar
 

Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

Article 
ADS 

Google Scholar
 

Kubica, A. & Beverland, M. E. Universal transversal gates with color codes: a simplified approach. Phys. Rev. A 91, 032330 (2015).

Article 
ADS 

Google Scholar
 

Moussa, J. E. Transversal clifford gates on folded surface codes. Phys. Rev. A 94, 042316 (2016).

Article 
ADS 

Google Scholar
 

Łodyga, J., Mazurek, P., Grudka, A. & Horodecki, M. Simple scheme for encoding and decoding a qubit in unknown state for various topological codes. Sci. Rep. 5, 8975 (2015).

Article 

Google Scholar
 

Li, Y. A magic state’s fidelity can be superior to the operations that created it. N. J. Phys. 17, 023037 (2015).

Article 

Google Scholar
 

Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

Article 

Google Scholar
 

Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

Article 
ADS 

Google Scholar
 

Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

Article 

Google Scholar
 

Bravyi, S. & Haah, J. Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012).

Article 
ADS 

Google Scholar
 

Haah, J. & Hastings, M. B. Codes and protocols for distilling t, controlled-s, and Toffoli gates. Quantum 2, 71 (2018).

Article 

Google Scholar
 

Meier, A. M., Eastin, B. & Knill, E. Magic-state distillation with the four-qubit code. Quantum Inf. Comput. 13, 195–209 (2013).

MathSciNet 

Google Scholar
 

Campbell, E. T., Anwar, H. & Browne, D. E. Magic-state distillation in all prime dimensions using quantum reed-muller codes. Phys. Rev. X 2, 041021 (2012).


Google Scholar
 

Jones, C. Multilevel distillation of magic states for quantum computing. Phys. Rev. A 87, 042305 (2013).

Article 
ADS 

Google Scholar
 

Hastings, M. B. & Haah, J. Distillation with sublogarithmic overhead. Phys. Rev. Lett. 120, 050504 (2018).

Article 
ADS 

Google Scholar
 

Krishna, A. & Tillich, J.-P. Towards low overhead magic state distillation. Phys. Rev. Lett. 123, 070507 (2019).

Article 
ADS 

Google Scholar
 

Beverland, M., Campbell, E., Howard, M. & Kliuchnikov, V. Lower bounds on the non-clifford resources for quantum computations. Quantum Sci. Technol. 5, 035009 (2020).

Article 
ADS 

Google Scholar
 

Jones, C. Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A 87, 022328 (2013).

Article 
ADS 

Google Scholar
 

Selinger, P. Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013).

Article 
ADS 

Google Scholar
 

Gidney, C. & Fowler, A. G. Efficient magic state factories with a catalyzed \(\left\vert CCZ\right\rangle\) to \(\left\vert CCZ\right\rangle\) transformation. Quantum 3, 135 (2019).

Article 

Google Scholar
 

Goppa, V. D. Algebraico-geometric codes. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 46, 762 (1982).

MathSciNet 

Google Scholar
 

Gottesman, D. Surviving as a Quantum Computer in a Classical World (Self-Published, 2024).

Vasmer, M. & Kubica, A. Morphing quantum codes. PRX Quantum 3, 030319 (2022).

Article 
ADS 

Google Scholar
 

Golowich, L. & Guruswami, V. Asymptotically good quantum codes with transversal non-Clifford gates. Preprint at https://doi.org/10.48550/arXiv.2408.09254 (2024).

Nguyen, Q. T., Good binary quantum codes with transversal ccz gate. Preprint at https://doi.org/10.48550/arXiv.2408.10140 (2024).

Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).

Article 
ADS 

Google Scholar
 

Steane, A. Multiple-particle interference and quantum error correction. Proc. R. Soc. London A 452, 2551 (1996).

Article 
ADS 
MathSciNet 

Google Scholar
 

MacWilliams, F. J. & Sloane, N. J. A. The Theory of Error-Correcting Codes vol. 16 (Elsevier, 1977).

Stichtenoth, H. Algebraic Function Fields and Codes vol. 254 (Springer, 2009).

Houshmand, M., Zamani, M. S., Sedighi, M. & Arabzadeh, M. Decomposition of diagonal hermitian quantum gates using multiple-controlled pauli z gates. ACM J. Emerg. Technolog. Comput. Syst 11, 1 (2014).

Article 

Google Scholar
 

Tsfasman, M. A., Vlădut, S. G., & Nogin, D. Algebraic Geometric Codes: Basic Notions vol. 139 (American Mathematical Society, 2007).

Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 375–388 (Association for Computing Machinery, 2022).

Leverrier, A. and Zemor, G. Quantum tanner codes. In Proc. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science 872–883 (IEEE Computer Society, 2022).

Dinur, I., Hsieh, M.-H., Lin, T.-C., and Vidick, T. Good quantum LDPC codes with linear time decoders. In Proc. 55th Annual ACM Symposium on Theory of Computing, STOC 2023 905–918 (Association for Computing Machinery, 2023).

Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207 (2005).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996).

Article 
ADS 

Google Scholar
 

Veitch, V., Ferrie, C., Gross, D. & Emerson, J. Negative quasi-probability as a resource for quantum computation. N. J. Phys. 14, 113011 (2012).

Article 

Google Scholar
 

Veitch, V., Mousavian, S. A. H., Gottesman, D. & Emerson, J. The resource theory of stabilizer quantum computation. N. J. Phys. 16, 013009 (2014).

Article 
MathSciNet 

Google Scholar
 

Howard, M. & Campbell, E. Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017).

Article 
ADS 

Google Scholar
 

Hayashi, M. & Yamasaki, H. Generalized quantum Stein’s lemma and second law of quantum resource theories. Preprint at https://doi.org/10.48550/arXiv.2408.02722 (2024).