Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

Article 
MathSciNet 

Google Scholar
 

Park, S., Kim, Y., Urgaonkar, B., Lee, J. & Seo, E. A comprehensive study of energy efficiency and performance of Flash-based SSD. J. Syst. Archit. 57, 354–365 (2011).

Article 

Google Scholar
 

Proesmans, K., Ehrich, J. & Bechhoefer, J. Finite-time Landauer principle. Phys. Rev. Lett. 125, 100602 (2020).

Article 
ADS 

Google Scholar
 

Zhen, Y.-Z., Egloff, D., Modi, K. & Dahlsten, O. Universal bound on energy cost of bit reset in finite time. Phys. Rev. Lett. 127, 190602 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Blaber, S. & Sivak, D. A. Optimal control in stochastic thermodynamics. J. Phys. Commun. 7, 033001 (2023).

Article 

Google Scholar
 

Guéry-Odelin, D., Jarzynski, C., Plata, C. A., Prados, A. & Trizac, E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. Rep. Prog. Phys. 86, 035902 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Schmiedl, T. & Seifert, U. Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007).

Article 
ADS 

Google Scholar
 

Sivak, D. A. & Crooks, G. E. Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108, 190602 (2012).

Article 
ADS 

Google Scholar
 

Bennett, C. H. Notes on the history of reversible computation. IBM J. Res. Dev. 32, 16–23 (1988).

Article 
MathSciNet 

Google Scholar
 

Wolpert, D. H. et al. Is stochastic thermodynamics the key to understanding the energy costs of computation? Proc. Natl Acad. Sci. USA 121, e2321112121 (2024).

Article 

Google Scholar
 

Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).

Article 

Google Scholar
 

Mori, T. Floquet states in open quantum systems. Annu. Rev. Condens. Matter Phys. 14, 35–56 (2023).

Article 
ADS 

Google Scholar
 

Tietz, C., Schuler, S., Speck, T., Seifert, U. & Wrachtrup, J. Measurement of stochastic entropy production. Phys. Rev. Lett. 97, 050602 (2006).

Article 
ADS 

Google Scholar
 

De Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

Article 
ADS 

Google Scholar
 

Schuler, S., Speck, T., Tietz, C., Wrachtrup, J. & Seifert, U. Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005).

Article 
ADS 

Google Scholar
 

Skinner, D. J. & Dunkel, J. Estimating entropy production from waiting time distributions. Phys. Rev. Lett. 127, 198101 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Skinner, D. J. & Dunkel, J. Improved bounds on entropy production in living systems. Proc. Natl Acad. Sci. USA 118, e2024300118 (2021).

Article 

Google Scholar
 

Kim, J., Roh, J., Park, M. & Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 36, 2212220 (2024).

Article 

Google Scholar
 

Kirmani, A. R., Luther, J. M., Abolhasani, M. & Amassian, A. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Lett. 5, 3069–3100 (2020).

Article 

Google Scholar
 

Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).

Article 

Google Scholar
 

Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

Article 
ADS 

Google Scholar
 

Muñoz, R. N. et al. Memory in quantum dot blinking. Phys. Rev. E 106, 014127 (2022).

Article 
ADS 

Google Scholar
 

Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

Article 
ADS 

Google Scholar
 

Verberk, R., van Oijen, A. M. & Orrit, M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).

Article 
ADS 

Google Scholar
 

Shi, J. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021).

Article 
ADS 

Google Scholar
 

Krasselt, C. & von Borczyskowski, C. Electric field dependent photoluminescence blinking of single hybrid CdSe/CdS-PMMA quantum dots. J. Phys. Chem. C 125, 15384–15395 (2021).

Article 

Google Scholar
 

Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951).

Article 
MathSciNet 

Google Scholar
 

Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Roldán, É., Barral, J., Martin, P., Parrondo, J. M. & Jülicher, F. Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations. New J. Phys. 23, 083013 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lynn, C. W., Holmes, C. M., Bialek, W. & Schwab, D. J. Decomposing the local arrow of time in interacting systems. Phys. Rev. Lett. 129, 118101 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Di Terlizzi, I. et al. Variance sum rule for entropy production. Science 383, 971–976 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Garg, A. & Pati, A. K. Trade-off relations between quantum coherence and measure of many-body localization. Phys. Rev. B 111, 054202 (2025).

Article 
ADS 

Google Scholar
 

Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9, 310–314 (2013).

Article 

Google Scholar
 

Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

Article 

Google Scholar
 

Deffner, S. Kibble-Zurek scaling of the irreversible entropy production. Phys. Rev. E 96, 052125 (2017).

Article 
ADS 

Google Scholar
 

Wuttig, M. & Salinga, M. Fast transformers. Nat. Mater. 11, 270–271 (2012).

Article 
ADS 

Google Scholar
 

Mpemba, E. B. & Osborne, D. G. Cool? Phys. Educ. 4, 172–175 (1969).

Article 
ADS 

Google Scholar
 

Lu, Z. & Raz, O. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse. Proc. Natl Acad. Sci. USA 114, 5083–5088 (2017).

Article 
ADS 

Google Scholar
 

Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).

Article 

Google Scholar
 

Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

Article 
ADS 

Google Scholar
 

Hu, Z., Liu, S., Qin, H., Zhou, J. & Peng, X. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 142, 4254–4264 (2020).

Article 
ADS 

Google Scholar
 

Esquível, M. L. & Krasii, N. P. Statistics for continuous time Markov chains, a short review. Axioms 14, 283 (2025).

Article 

Google Scholar
 

Zucchini, W. & MacDonald, I. L. Hidden Markov Models for Time Series: An Introduction Using R (Chapman and Hall/CRC, 2009).

Yuan, G., Gómez, D. E., Kirkwood, N., Boldt, K. & Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 12, 3397–3405 (2018).

Article 

Google Scholar
 

Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (2002).

Article 
ADS 

Google Scholar
 

Carter, C. K. & Kohn, R. On Gibbs sampling for state space models. Biometrika 81, 541–553 (1994).

Article 
MathSciNet 

Google Scholar
 

Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

Article 
ADS 

Google Scholar
 

Schuster, H. G. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley, 2013).

Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978).

Article 
ADS 
MathSciNet 

Google Scholar
 

Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

Article 
ADS 

Google Scholar
 

Hatano, T. & Sasa, S.-i. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001).

Article 
ADS 

Google Scholar
 

Trepagnier, E. et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl Acad. Sci. USA 101, 15038–15041 (2004).

Article 
ADS 

Google Scholar
 

Mounier, A. & Naert, A. The Hatano-Sasa equality: transitions between steady states in a granular gas. Europhys. Lett. 100, 30002 (2012).

Article 
ADS 

Google Scholar
 

Vaikuntanathan, S. & Jarzynski, C. Dissipation and lag in irreversible processes. Europhys. Lett. 87, 60005 (2009).

Article 
ADS 

Google Scholar
 

Caprini, L., Löwen, H. & Geilhufe, R. M. Ultrafast entropy production in pump-probe experiments. Nat. Commun. 15, 94 (2024).

Article 
ADS 

Google Scholar
 

Tietjen, F. & Geilhufe, R. M. Ultrafast entropy production in nonequilibrium magnets. PNAS Nexus 4, pgaf055 (2025).

Article 

Google Scholar
 

Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 139, 16556–16567 (2017).

Article 
ADS 

Google Scholar
 

Zürcher, U. What is the frequency of an electron wave? Eur. J. Phys. 37, 045401 (2016).

Article 

Google Scholar