Magurran, A. E. How ecosystems change. Science 351, 448–449 (2016).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).

Article 
PubMed 

Google Scholar
 

Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).

Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.0803524105 (2008).

Russell, G. J., Diamond, J. M., Pimm, S. L. & Reed, T. M. A century of turnover: community dynamics at three timescales. J. Animal Ecol. 64, 628–641 (1995).

Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. https://doi.org/10.1038/s41467-020-17171-y (2020).

Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 1–12 (2021).

Article 

Google Scholar
 

Malhi, Y. et al. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. B 375, 20190104 (2020).

Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang Biol. 20, 2221–2229 (2014).

Article 
PubMed 
ADS 

Google Scholar
 

MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography, Vol. 1 (Princeton University Press, 2001).

Hanski, I. Spatial patterns of coexistence of competing species in patchy habitat. Theor. Ecol. 1, 29–43 (2008).

Article 

Google Scholar
 

Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark. Ecol. Manag. 126, 173–189 (2000).

Article 

Google Scholar
 

Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B: Biol. Sci. 364, 3429 (2009).

Article 

Google Scholar
 

Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

Article 
ADS 

Google Scholar
 

Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang 2, 121–124 (2012).

Article 
ADS 

Google Scholar
 

O’Sullivan, J. D., Terry, J. C. D. & Rossberg, A. G. Intrinsic ecological dynamics drive biodiversity turnover in model metacommunities. Nat Commun 12, 3627 (2021).

Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Pérez, L. et al. Ecological turnover in neotropical freshwater and terrestrial communities during episodes of abrupt climate change. Quat. Res. 101, 26–36 (2021).

Article 
ADS 

Google Scholar
 

Khaliq, I. et al. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 15, 1921 (2024).

Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front Ecol Environ 15, 84–90 (2017).

Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients. Proc. R. Soc. B Biol. Sci. 280, 20131201 (2013).

Rossberg, A. G. Food Webs and Biodiversity: Foundations, Models, Data (John Wiley & Sons, 2013).

Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046–1049 (2007).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography, 467 (Princeton Univ. Press, 1967).

Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849 (1972).

Article 

Google Scholar
 

Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).

Article 

Google Scholar
 

Bormann, F. H. & Likens, G. E. Catastrophic disturbance and the steady state in northern hardwood forests: a new look at the role of disturbance in the development of forest ecosystems suggests important implications for land-use policies. Am. Sci. 67, 660–669 (1979).

ADS 

Google Scholar
 

Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arias, P. A. et al. Intergovernmental Panel on Climate Change (IPCC). Technical summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 35–144 (Cambridge University Press, 2023).

Stocker, T.F. et al. (eds.) Climate change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assess- Ment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (2013).

Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372–5379 (2021).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

Article 
PubMed 

Google Scholar
 

Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv 219, 175–183 (2018).

Article 

Google Scholar
 

Ochiai, A. Zoogeographical studies on the soleoid fishes found in Japan and its neighbouring regions-III. Environ. Sci. 22, 522–525 (1957).


Google Scholar
 

De Cáceres, M., Font, X. & Oliva, F. Assessing species diagnostic value in large data sets: a comparison between phi-coefficient and Ochiai index. J. Vegetation Sci. 19, 779–788 (2008).

Article 

Google Scholar
 

Kalgotra, P., Sharda, R. & Luse, A. Which similarity measure to use in network analysis: Impact of sample size on phi correlation coefficient and Ochiai index. Int J. Inf. Manag. 55, 102229 (2020).


Google Scholar
 

Lynch, J. F. & Johnson, N. K. Turnover and equilibria in insular avifaunas, with special reference to the California Channel Islands. Condor 76, 370–384 (1974).

Nilsson, I. N. & Nilsson, S. G. Experimental estimates of census efficiency and pseudoturnover on islands: error trend and between-observer variation when recording vascular plants. J. Ecol. 73, 65 (1985).

Article 

Google Scholar
 

Nilsson, I. N. & Nilsson, S. G. Turnover of vascular plant species on small islands in lake Möckeln, South Sweden 1976-1980. Oecologia 53, 128–133 (1982).

Miller, R. G. Simultaneous Statistical Inference. Simultaneous statistical inference (Springer, 1981).

Krieger, A., Porembski, S. & Barthlott, W. Temporal dynamics of an ephemeral plant community: species turnover in seasonal rock pools on Ivorian inselbergs. Plant Ecol. 167, 283–292 (2003).

Ghosh, S. & Matthews, B. Temporal turnover in species’ ranks can explain variation in Taylor’s slope for ecological timeseries. Ecology 105, e4381 (2024).

Article 
PubMed 

Google Scholar
 

Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).

O’Sullivan, J. D., Terry, J. C. D. & Rossberg, A. G. Temporally robust occupancy frequency distributions in riverine metacommunities explained by local biodiversity regulation. Glob. Ecol. Biogeogr. 32, 2230–2243 (2023).

Article 

Google Scholar
 

Terry, J. C. D. & Rossberg, A. G. Slower but deeper community change: intrinsic dynamics regulate anthropogenic impacts on species temporal turnover. Ecology 105, e4430 (2024).

Article 
PubMed 

Google Scholar
 

Gibbons, J. D. & Chakraborti, S. Nonparametric Statistical Inference. Nonparametric Statistical Inference (Chapman and Hall/CRC, 2010). https://doi.org/10.1201/9781439896129.

Cornford, R., Spooner, F., McRae, L., Purvis, A. & Freeman, R. Ongoing over-exploitation and delayed responses to environmental change highlight the urgency for action to promote vertebrate recoveries by 2030. Proc. R. Soc. B Biol. Sci. 290, 20230464 (2023).

Arnoulx De Pirey, T. & Bunin, G. Many-species ecological fluctuations as a jump process from the brink of extinction. Phys. Rev. X 14, 011037 (2024).

Mallmin, E., Traulsen, A. & De Monte, S. Chaotic turnover of rare and abundant species in a strongly interacting model community. Proc. Natl. Acad. Sci. USA 121, e2312822121 (2024).

Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Aulsebrook, L. C. et al. Reproduction in a polluted world: Implications for wildlife. Reproduction 160, R13–R23 (2020).

Tinoco, B. A., Latta, S. C., Astudillo, P. X., Nieto, A. & Graham, C. H. Temporal stability in species richness but reordering in species abundances within avian assemblages of a tropical Andes conservation hot spot. Biotropica 53, 1673–1684 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Robinson, G. R. & Quinn, J. F. Extinction, turnover and species diversity in an experimentally fragmented California annual grassland. Oecologia 76, 71–82 (1988).

Article 
PubMed 
ADS 

Google Scholar
 

Damschen, E. I. et al. Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science 365, 1478–1480 (2019).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).

Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B. 372, https://doi.org/10.1098/rstb.2016.0135 (2017).

Kirchengast, G. & Pichler, M. A traceable global warming record and clarity for the 1.5 °C and well-below-2 °C goals. Commun. Earth Environ. 6, 1–12 (2025).

Article 

Google Scholar
 

Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

Ramalho, Q. et al. Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Conserv 279, 109911 (2023).

Article 

Google Scholar
 

McCain, C. M., King, S. R. B. & Szewczyk, T. M. Unusually large upward shifts in cold-adapted, montane mammals as temperature warms. Ecology 102, e03300 (2021).

Article 
PubMed 

Google Scholar
 

Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B Biol. Sci. 280, 20121931 (2013).

Article 

Google Scholar
 

Pinsky, M. L. et al. Warming and cooling catalyse widespread temporal turnover in biodiversity. Nature 638, 995–999 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Gower, J. C. & Legendre, P. Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986).

Article 
MathSciNet 

Google Scholar
 

Bolton, H. C. On the mathematical significance of the similarity index of Ochiai as a measure for biogeographical habitats. Aust. J. Zool. 39, 143–156 (1991).

Article 

Google Scholar
 

Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

Article 

Google Scholar
 

Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (Wiley, 2014).

Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

Article 

Google Scholar
 

Cockrell, C. et al. Self-organization of ecosystems to exclude half of all potential invaders. Phys. Rev. Res 6, 013093 (2024).

Article 
CAS 

Google Scholar
 

Arnold Taylor B. leaderCluster: Leader Clustering Algorithm. R package version 1.5. Available at https://CRAN.R-project.org/package=leaderCluster (2023).

Williamson, M. The land-bird community of Skokholm: ordination and turnover. Oikos 41, 378–384 (1983).