Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484. https://doi.org/10.1021/jf200439q (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Morillo, M. et al. Natural and synthetic derivatives of the steroidal glycoalkaloids of Solanum genus and biological activity. Nat. Prod. Res. 8, 371. https://doi.org/10.35248/231229-6836.20.8.371 (2020).

Article 

Google Scholar
 

Delbrouck, J. A. et al. The therapeutic value of Solanum steroidal (glyco)alkaloids: a 10-year comprehensive review. Molecules 28, 4957. https://doi.org/10.3390/molecules28134957 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bueno da Silva, M., Wiese-Klinkenberg, A., Usadel, B. & Genzel, F. Potato berries as a valuable source of compounds potentially applicable in crop protection and pharmaceutical sectors: a review. J. Agric. Food Chem. 72, 15449–15462. https://doi.org/10.1021/acs.jafc.4c03071 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coxon, D. T. The glycoalkaloid content of potato berries. J. Sci. Food Agric. 32, 412–414. https://doi.org/10.1002/jsfa.2740320416 (1981).

Article 
CAS 

Google Scholar
 

Friedman, M. & Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 40, 419–423. https://doi.org/10.1021/jf00015a011 (1992).

Article 
CAS 

Google Scholar
 

Mensinga, T. T. et al. Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regul. Toxicol. Pharmacol. 41, 66–72. https://doi.org/10.1016/j.yrtph.2004.09.004 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Ginzberg, I., Tokuhisa, J. G. & Veilleux, R. E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res. 52, 1–15. https://doi.org/10.1007/s11540-008-9103-4 (2009).

Article 
CAS 

Google Scholar
 

Khanal, S. et al. Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives. Biomass Convers. Biorefin. 14, 23335–23360. https://doi.org/10.1007/s13399-023-04521-1 (2023).

Article 
CAS 

Google Scholar
 

Friedman, M. & McDonald, G. M. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. CRC Crit. Rev. Plant. Sci. 16, 55–132. https://doi.org/10.1080/713608144 (1997).

Article 
CAS 

Google Scholar
 

Percival, G. C., Dixon, G. R. & Glycoalkaloids In Handbook of Plant and Fungal Toxicants19–35 (CRC, 2020). https://doi.org/10.1201/9780429281952-2.

Rayburn, J. R., Bantlej, J. A. & Friedman, M. Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 42, 1511–1515. https://doi.org/10.1021/jf00043a022 (1994).

Article 
CAS 

Google Scholar
 

Roddick, J. G., Rijnenberg, A. L. & Weissenberg, M. Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29, 1513–1518. https://doi.org/10.1016/0031-9422(90)80111-s (1990).

Article 
CAS 

Google Scholar
 

Friedman, M., Rayburn, J. R. & Bantle, J. A. Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay—Xenopus (FETAX). Food Chem. Toxicol. 29, 537–547. https://doi.org/10.1016/0278-6915(91)90046-a (1991).

Article 
CAS 
PubMed 

Google Scholar
 

Blankemeyer, J. T., Mcwilliams, M. L., Rayburn, J. R., Weissenberg, M. & Friedman, M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem. Toxicol. 36, 383–389. https://doi.org/10.1016/s0278-6915(97)00164-6 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Keukens, E. A. J. et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Et Biophys. Acta (BBA) – Biomembr. 1240, 216–228. https://doi.org/10.1016/0005-2736(95)00186-7 (1995).

Article 

Google Scholar
 

Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wolters, P. J. et al. Tetraose steroidal glycoalkaloids from potato provide resistance against Alternaria Solani and Colorado potato beetle. Elife 12, 1–24. https://doi.org/10.7554/eLife.87135 (2023).

Article 

Google Scholar
 

Baur, S. et al. Steroidal Saponinsnew sources to develop potato (Solanum tuberosum L.) genotypes resistant against certain Phytophthora infestans strains. J. Agric. Food Chem. 70, 7447–7459. https://doi.org/10.1021/acs.jafc.2c02575 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Fewell, A. M. & Roddick, J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101, 597–603. https://doi.org/10.1017/s0953756296002973 (1997).

Article 
CAS 

Google Scholar
 

Udalova, Z. V., Zinov’eva, S. V., Vasil’eva, I. S. & Paseshnickenko, V. A. Interaction between structure of plant steroids and their effect on phytonematodes. Appl. Biochem. Microbiol. 40, 109–113. https://doi.org/10.1023/B:ABIM.0000010362.79928.77 (2004).

Article 

Google Scholar
 

Desmedt, W., Mangelinckx, S., Kyndt, T. & Vanholme, B. A phytochemical perspective on plant defense against nematodes. Front. Plant. Sci. 11, 602079. https://doi.org/10.3389/fpls.2020.602079 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sinden, S. L., Sanford, L. L. & Osman, S. F. Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense bitter. Am. Potato J. 57, 331–343. https://doi.org/10.1007/bf02854028 (1980).

Article 
CAS 

Google Scholar
 

Tai, H. H., Worrall, K., Pelletier, Y., De Koeyer, D. & Calhoun, L. A. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. J. Agric. Food Chem. 62, 9043–9055. https://doi.org/10.1021/jf502508y (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Shavanov, M. V., Shigapov, I. I. & Niaz, A. Biological methods for pests and diseases control in agricultural plants. In AIP Conf. Proc. 2390, 030081. https://doi.org/10.1063/5.0070487 (2022).

Abdullah, H. M. et al. Present and future scopes and challenges of plant pest and disease (P&D) monitoring: remote sensing, image processing, and artificial intelligence perspectives. Remote Sens. Appl. 32, 100996. https://doi.org/10.1016/j.rsase.2023.100996 (2023).

Article 

Google Scholar
 

Daub, M. The beet cyst nematode (Heterodera schachtii): an ancient threat to sugar beet crops in central Europe has become an invisible actor. In Integrated Nematode Management: state-of-the-art and Visions for the Future 394–399 (CABI, UK, https://doi.org/10.1079/9781789247541.0055 (2021).

Chapter 

Google Scholar
 

Phani, V., Khan, M. R. & Dutta, T. K. Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Prot. 144, 1005573. https://doi.org/10.1016/j.cropro.2021.105573 (2021).

Article 

Google Scholar
 

Daraban, G. M., Hlihor, R. M. & Suteu, D. Pesticides vs. biopesticides: from pest management to toxicity and impacts on the environment and human health. Toxics 11, 983. https://doi.org/10.3390/toxics11120983 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khursheed, A. et al. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Jyotsna, B. et al. Essential oils from plant resources as potent insecticides and repellents: current status and future perspectives. Biocatal. Agric. Biotechnol. 61, 103395. https://doi.org/10.1016/j.bcab.2024.103395 (2024).

Article 
CAS 

Google Scholar
 

Burtscher-Schaden, H., Durstberger, T. & Zaller, J. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 10, 753. https://doi.org/10.3390/toxics10120753 (2022).

Arnason, J. T., Sims, S. R. & Scott, I. M. Natural products from plants as insecticides. Phytochemistry and pharmacognosy in Encyclopedia of Life Support Systems (EOLSS), Developed Under the Auspices of the UNESCO, Eolss, Paris, France. (2012).


Google Scholar
 

Stevenson, P. C., Isman, M. B. & Belmain, S. R. Pesticidal plants in africa: a global vision of new biological control products from local uses. Ind. Crops Prod. 110, 2–9. https://doi.org/10.1016/j.indcrop.2017.08.034 (2017).

Article 

Google Scholar
 

Oguh, C. E. et al. Natural pesticides (biopesticides) and uses in pest management – a critical review. Asian J. Biotech. Gen. Eng. 2, 1–18 (2019).


Google Scholar
 

Siegwart, M. et al. Resistance to bio-insecticides or how to enhance their sustainability: a review. Front. Plant. Sci. 6, 381. https://doi.org/10.3389/fpls.2015.00381 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521. https://doi.org/10.1038/nbt.2597 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Copping, L. G. & Duke, S. O. Natural products that have been used commercially as crop protection agents. Pest Manag Sci. 63, 524–554. https://doi.org/10.1002/ps.1378 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Lengai, G. M. W., Muthomi, J. W. & Mbega, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239 (2020).

Article 
CAS 

Google Scholar
 

Šunjka, D. & Mechora, Š. An alternative source of biopesticides and improvement in their Formulation—Recent advances. Plants 11, 3172. https://doi.org/10.3390/plants11223172 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

U.S. Environmental Protection Agency. Biopesticides: classes & definitions. (2025). Available at: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides.

U.S. Environmental Protection Agency. Pesticide registration improvement extension Act (PRIA-5) fee schedules. (2025). Available at: https://www.epa.gov/pria-fees.

European Food Safety Authority. Pesticides: regulations and guidance. (2025). Available at: https://www.efsa.europa.eu/en/topics/topic/pesticides.

European Commision. Regulation (EU) 2022/1439 amending Regulation (EC) No 283/2013 on data requirements for active substances (microorganisms). (2022). Available at: https://eur-lex.europa.eu/eli/reg/2022/1439/oj/eng.

European Commission. Explanatory notes on the implementation of data requirements for microbial active substances. (2023). Available at: https://food.ec.europa.eu/system/files/2023-10/pesticides_ppp_app-proc_guide_imp-data-req_micro-organisms-ppp_imp-reg-11072009.pdf.

López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F. & Sánchez-Moreiras, A. M. A natural Indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis Thaliana. Plant. Physiol. Biochem. 151, 378–390. https://doi.org/10.1016/j.plaphy.2020.03.047 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Sołtys-Kalina, D., Strzelczyk-Żyta, D. M. Z., Wasilewicz-Flis, D., Marczewski, W. & I. & Phytotoxic potential of cultivated and wild potato species (Solanum sp.): role of glycoalkaloids, phenolics and flavonoids in phytotoxicity against mustard (Sinapis Alba L). Acta Physiol. Plant. 41, 55. https://doi.org/10.1007/s11738-019-2848-3 (2019).

Article 
CAS 

Google Scholar
 

Sun, F. et al. Effects of glycoalkaloids from Solanum plants on cucumber root growth. Phytochemistry 71, 1534–1538. https://doi.org/10.1016/j.phytochem.2010.06.002 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Sivasankara Pillai, S. & Dandurand, L. M. Effect of steroidal glycoalkaloids on hatch and reproduction of the potato cyst nematode Globodera pallida. Plant. Dis. 105, 2975–2980. https://doi.org/10.1094/pdis-02-21-0247-re (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sánchez-Maldonado, A. F., Schieber, A. & Gänzle, M. G. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): glycoalkaloids and phenolic acids show synergistic effects. J. Appl. Microbiol. 120, 955–965. https://doi.org/10.1111/jam.13056 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Bredenbruch, S. et al. The biological activity of bacterial rhamnolipids on Arabidopsis Thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. Pestic Biochem. Physiol. 204, 106103. https://doi.org/10.1016/j.pestbp.2024.106103 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Wi, S. J., Ji, N. R. & Park, K. Y. Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant. Physiol. 159, 251–265. https://doi.org/10.1104/pp.112.194654 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Singh, D. et al. Secondary Metabolite Engineering for Plant Immunity Against Various Pathogens. In Metabolic Engineering in Plants 123–143 (Springer Nature Singapore, Singapore, 2022). https://doi.org/10.1007/978-981-16-7262-0_5.

Wewer, V., Dombrink, I., Vom Dorp, K. & Dörmann, P. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J. Lipid Res. 52, 1039–1054. https://doi.org/10.1194/jlr.d013987 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, F. et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440–453. https://doi.org/10.1016/j.cell.2020.01.013 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500. https://doi.org/10.1038/nature05999 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nietzschmann, L. et al. Early Pep-13-induced immune responses are SERK3A/B-dependent in potato. Sci. Rep. 9, 18380. https://doi.org/10.1038/s41598-019-54944-y (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kammerhofer, N. et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New. Phytol. 207, 778–789. https://doi.org/10.1111/nph.13395 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Willig, J. J. et al. From root to shoot: quantifying nematode tolerance in Arabidopsis thaliana by high-throughput phenotyping of plant development. J. Exp. Bot. 74, 5487–5499. https://doi.org/10.1101/2023.03.15.532731 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, H., Li, M., Fan, Y., Liu, Y. & Qin, S. Antifungal activity of potato glycoalkaloids and its potential to control severity of dry rot caused by Fusarium sulphureum. Crop Sci. 63, 801–811. https://doi.org/10.1002/csc2.20874 (2023).

Article 
CAS 

Google Scholar
 

Pane, C. et al. Managing rhizoctonia damping-off of rocket (Eruca sativa) seedlings by drench application of bioactive potato leaf phytochemical extracts. Biology 9, 1–18. https://doi.org/10.3390/biology9090270 (2020).

Article 
CAS 

Google Scholar
 

Pacifico, D. et al. Sustainable use of bioactive compounds from Solanum tuberosum and brassicaceae wastes and by-products for crop protection—a review. Molecules 26 https://doi.org/10.3390/molecules26082174 (2021).

McKee, R. K. Affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. J. Gen. Microbiol. 20 https://doi.org/10.1099/00221287-20-3-686 (1959).

Hennessy, R. C. et al. Discovery of a bacterial gene cluster for deglycosylation of toxic potato steroidal glycoalkaloids α-chaconine and α-solanine. J. Agric. Food Chem. 68, 1390–1396. https://doi.org/10.1021/acs.jafc.9b07632 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, Y., Strelkov, S. E. & Hwang, S. F. Yield losses in Canola in response to Blackleg disease. Can. J. Plant. Sci. 100, 488–494. https://doi.org/10.1139/cjps-2019-0259 (2020).

Article 
CAS 

Google Scholar
 

Gaulin, E., Bottin, A. & Dumas, B. Sterol biosynthesis in oomycete pathogens. Plant. Signal. Behav. 5, 258–260. https://doi.org/10.4161/psb.5.3.10551 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lelario, F. et al. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chem. Biol. Techn Agric. 5, 13. https://doi.org/10.1186/s40538-018-0125-0 (2018).

Article 
CAS 

Google Scholar
 

Tajkarimi, M. M., Ibrahim, S. A. & Cliver, D. O. Antimicrobial herb and spice compounds in food. Food Control. 21, 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003 (2010).

Article 
CAS 

Google Scholar
 

Sasso, S., Scrano, L., Bonomo, M. G., Salzano, G. & Bufo, S. Secondary metabolites: applications on cultural heritage. Comm Appl. Biol. Sci 78, (2013).

Calabrese, E. J. Hormesis mediates acquired resilience: using plant-derived chemicals to enhance health. Annu. Rev. Food Sci. Technol. 12, 355–381. https://doi.org/10.1146/annurev-food-062420-124437 (2021).

Article 
PubMed 

Google Scholar
 

Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 3, 13. https://doi.org/10.1038/s41514-017-0013-z (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Song, F. et al. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biol. Technol. 196, 112176. https://doi.org/10.1016/j.postharvbio.2022.112176 (2023).

Article 
CAS 

Google Scholar
 

Friedman, M., Roitman, J. N. & Kozukue, N. Glycoalkaloid and Calystegine contents of eight potato cultivars. J. Agric. Food Chem. 51, 2964–2973. https://doi.org/10.1021/jf021146f (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Pęksa, A. et al. Assessment of the content of glycoalkaloids in potato snacks made from colored potatoes, resulting from the action of organic acids and thermal processing. Foods 13, 1712. https://doi.org/10.3390/foods13111712 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sijmons, P. C., Grundler, F. M. W., von Mende, N., Burrows, P. R. & Wyss, U. Arabidopsis Thaliana as a new model host for plant-parasitic nematodes. Plant. J. 1, 245–254. https://doi.org/10.1111/j.1365-313x.1991.00245.x (1991).

Article 

Google Scholar
 

Matera, C., Grundler, F. M. & Schleker, A. S. S. Sublethal Fluazaindolizine doses inhibit development of the cyst nematode (Heterodera schachtii) during sedentary parasitism. Pest Manag Sci. 77, 3571–3580. https://doi.org/10.1002/ps.6411 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Origin (Pro). Version 2020. OriginLab Corporation. (2020).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/

Weil, H. L. et al. PLANTdataHUB: a collaborative platform for continuous FAIR data sharing in plant research. Plant J. 116, 974–988. https://doi.org/10.1111/tpj.16474 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar