Sargent is the Lynn Hopton Davis and Greg Davis Professor of Chemistry at the Weinberg College of Arts and Sciences, professor of electrical and computer engineering at Northwestern Engineering, and director of the Paula M. Trienens Institute for Sustainability and Energy. The work was presented in the paper “Electrified Reversible Surface Mineralization of CO2 for Direct Air Capture,” published Feb. 13 in Nature Energy. Liu is a postdoctoral fellow in Sargent’s lab. Omar Farha, Charles E. and Emma H. Morrison Professor in Chemistry and chair of the Department of Chemistry and (by courtesy) professor of chemical and biological engineering, collaborated on the research. The work was also the result of a project sponsored by TotalEnergies, an integrated energy and petroleum company based near Paris in Courbevoie, France.
“The paper is the first demonstration of carbon capture using reversible surface mineralization mechanism,” Sargent said. “It’s also a great example of what makes Northwestern such a special place: by working with Professor Omar Farha and his team, world leaders in solving problems in chemistry and materials science relevant to energy and the environment. Uniting their chemical brilliance with our group’s expertise in electrochemistry and systems, we were able to document a notable advance underpinned by frontier materials chemistry.
“The next step will be to design new electrochemical systems that further improve key measures like cost and efficiency per surface area.”
The manuscript builds on earlier work using electrochemical methods to capture carbon, focusing on improving a key limitation for electrified DAC: sensitivity to oxygen. Traditional DAC methods that rely on heat use considerable energy. Because the energy often comes from fossil fuels, the overall carbon removal is less impactful. Organic materials used in some systems can also break down or lose effectiveness when exposed to the oxygen in air, which makes long-term operation challenging.