Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).
Dzero, M., Sun, K., Coleman, P. & Galitski, V. Theory of topological Kondo insulators. Phys. Rev. B 85, 045130 (2012).
Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).
Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41 (1961).
Martin, R. M. & Allen, J. Theory of mixed valence: metals or small gap insulators. J. Appl. Phys. 50, 7561–7566 (1979).
Varma, C. Mixed-valence compounds. Rev. Mod. Phys. 48, 219 (1976).
Kim, D., Grant, T. & Fisk, Z. Limit cycle and anomalous capacitance in the Kondo insulator SmB6. Phys. Rev. Lett. 109, 096601 (2012).
Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88, 180405 (2013).
Kim, D. et al. Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep. 3, 3150 (2013).
Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. 3, 011011 (2013).
Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).
Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).
Kim, D.-J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).
Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).
Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nat. Phys. 20, 275–280 (2024).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).
Rademaker, L. Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).
Devakul, T. & Fu, L. Quantum anomalous Hall effect from inverted charge transfer gap. Phys. Rev. 12, 021031 (2022).
Mendez-Valderrama, J. F., Kim, S. & Chowdhury, D. Correlated topological mixed-valence insulators in moiré heterobilayers. Phys. Rev. B 110, L201105 (2024).
Xie, F., Chen, L., Fang, Y. & Si, Q. Topological Kondo semimetals emulated in heterobilayer transition metal dichalcogenides. Phys. Rev. Res. 7, 033093 (2025).
Guerci, D. et al. Topological Kondo semimetal and insulator in AB-stacked heterobilayer transition metal dichalcogenides. Phys. Rev. B 110, 165128 (2024).
Guerci, D. et al. Chiral Kondo lattice in doped MoTe2/WSe2 bilayers. Sci. Adv. 9, eade7701 (2023).
Xie, F., Chen, L. & Si, Q. Kondo effect and its destruction in heterobilayer transition metal dichalcogenides. Phys. Rev. Res. 6, 013219 (2024).
Dalal, A. & Ruhman, J. Orbitally selective Mott phase in electron-doped twisted transition metal-dichalcogenides: a possible realization of the Kondo lattice model. Phys. Rev. Res. 3, 043173 (2021).
Kumar, A., Hu, N. C., MacDonald, A. H. & Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Phys. Rev. B 106, L041116 (2022).
Zhao, W. et al. Emergence of ferromagnetism at the onset of moiré Kondo breakdown. Nat. Phys. 20, 1772–1777 (2024).
Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).
Du, L., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).
Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).
Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).
Han, Z. et al. Quantum oscillations between excitonic and quantum spin Hall insulators in moiré WSe2. Preprint at https://arxiv.org/abs/2509.19287 (2025).
Kadowaki, K. & Woods, S. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).
Burdin, S., Georges, A. & Grempel, D. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 85, 1048 (2000).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Väyrynen, J. I., Goldstein, M. & Glazman, L. I. Helical edge resistance introduced by charge puddles. Phys. Rev. Lett. 110, 216402 (2013).
Väyrynen, J. I., Goldstein, M., Gefen, Y. & Glazman, L. I. Resistance of helical edges formed in a semiconductor heterostructure. Phys. Rev. B 90, 115309 (2014).
Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).
Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).
Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).
Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).
Kang, K. et al. Double quantum spin hall phase in moiré WSe2. Nano Lett. 24, 14901–14907 (2024).
Coleman, P. Heavy Fermions: Electrons at the Edge of Magnetism (Wiley, 2007).
König, M. Spin-Related Transport Phenomena in HgTe-based Quantum Well Structures. PhD thesis, Universität Würzburg (2007).
Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585 (1981).
Kane, C. & Fisher, M. P. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220 (1992).
Li, T., Wang, P., Sullivan, G., Lin, X. & Du, R.-R. Low-temperature conductivity of weakly interacting quantum spin Hall edges in strained-layer InAs/GaInSb. Phys. Rev. B 96, 241406 (2017).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).
Ashoori, R. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088 (1992).
Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).
Pavarini, E., Coleman, P. & Koch, E. Many-Body Physics: From Kondo to Hubbard. Report No. 3958060749 (Theoretische Nanoelektronik, 2015).
Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).