Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

Article 
ADS 

Google Scholar
 

Dzero, M., Sun, K., Coleman, P. & Galitski, V. Theory of topological Kondo insulators. Phys. Rev. B 85, 045130 (2012).

Article 
ADS 

Google Scholar
 

Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).

Article 
ADS 

Google Scholar
 

Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41 (1961).

Article 
ADS 
MathSciNet 

Google Scholar
 

Martin, R. M. & Allen, J. Theory of mixed valence: metals or small gap insulators. J. Appl. Phys. 50, 7561–7566 (1979).

Article 
ADS 

Google Scholar
 

Varma, C. Mixed-valence compounds. Rev. Mod. Phys. 48, 219 (1976).

Article 
ADS 

Google Scholar
 

Kim, D., Grant, T. & Fisk, Z. Limit cycle and anomalous capacitance in the Kondo insulator SmB6. Phys. Rev. Lett. 109, 096601 (2012).

Article 
ADS 

Google Scholar
 

Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88, 180405 (2013).

Article 
ADS 

Google Scholar
 

Kim, D. et al. Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep. 3, 3150 (2013).

Article 
ADS 

Google Scholar
 

Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. 3, 011011 (2013).

Article 

Google Scholar
 

Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).

Article 
ADS 

Google Scholar
 

Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).

Article 
ADS 

Google Scholar
 

Kim, D.-J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).

Article 
ADS 

Google Scholar
 

Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

Article 
ADS 

Google Scholar
 

Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

Article 
ADS 

Google Scholar
 

Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

Article 

Google Scholar
 

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

Article 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
ADS 

Google Scholar
 

Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

Article 
ADS 

Google Scholar
 

Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).

Article 
ADS 

Google Scholar
 

Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nat. Phys. 20, 275–280 (2024).

Article 

Google Scholar
 

Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

Article 
ADS 

Google Scholar
 

Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).

Article 

Google Scholar
 

Rademaker, L. Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).

Article 
ADS 

Google Scholar
 

Devakul, T. & Fu, L. Quantum anomalous Hall effect from inverted charge transfer gap. Phys. Rev. 12, 021031 (2022).

Article 

Google Scholar
 

Mendez-Valderrama, J. F., Kim, S. & Chowdhury, D. Correlated topological mixed-valence insulators in moiré heterobilayers. Phys. Rev. B 110, L201105 (2024).

Article 
ADS 

Google Scholar
 

Xie, F., Chen, L., Fang, Y. & Si, Q. Topological Kondo semimetals emulated in heterobilayer transition metal dichalcogenides. Phys. Rev. Res. 7, 033093 (2025).

Article 

Google Scholar
 

Guerci, D. et al. Topological Kondo semimetal and insulator in AB-stacked heterobilayer transition metal dichalcogenides. Phys. Rev. B 110, 165128 (2024).

Article 
ADS 

Google Scholar
 

Guerci, D. et al. Chiral Kondo lattice in doped MoTe2/WSe2 bilayers. Sci. Adv. 9, eade7701 (2023).

Article 

Google Scholar
 

Xie, F., Chen, L. & Si, Q. Kondo effect and its destruction in heterobilayer transition metal dichalcogenides. Phys. Rev. Res. 6, 013219 (2024).

Article 

Google Scholar
 

Dalal, A. & Ruhman, J. Orbitally selective Mott phase in electron-doped twisted transition metal-dichalcogenides: a possible realization of the Kondo lattice model. Phys. Rev. Res. 3, 043173 (2021).

Article 

Google Scholar
 

Kumar, A., Hu, N. C., MacDonald, A. H. & Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Phys. Rev. B 106, L041116 (2022).

Article 
ADS 

Google Scholar
 

Zhao, W. et al. Emergence of ferromagnetism at the onset of moiré Kondo breakdown. Nat. Phys. 20, 1772–1777 (2024).

Article 

Google Scholar
 

Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

Article 
ADS 

Google Scholar
 

Du, L., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).

Article 
ADS 

Google Scholar
 

Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

Article 

Google Scholar
 

Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

Article 
ADS 

Google Scholar
 

Han, Z. et al. Quantum oscillations between excitonic and quantum spin Hall insulators in moiré WSe2. Preprint at https://arxiv.org/abs/2509.19287 (2025).

Kadowaki, K. & Woods, S. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).

Article 
ADS 

Google Scholar
 

Burdin, S., Georges, A. & Grempel, D. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 85, 1048 (2000).

Article 
ADS 

Google Scholar
 

Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

Article 
ADS 

Google Scholar
 

Väyrynen, J. I., Goldstein, M. & Glazman, L. I. Helical edge resistance introduced by charge puddles. Phys. Rev. Lett. 110, 216402 (2013).

Article 
ADS 

Google Scholar
 

Väyrynen, J. I., Goldstein, M., Gefen, Y. & Glazman, L. I. Resistance of helical edges formed in a semiconductor heterostructure. Phys. Rev. B 90, 115309 (2014).

Article 
ADS 

Google Scholar
 

Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

Article 
ADS 

Google Scholar
 

Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

Article 
ADS 

Google Scholar
 

Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

Article 
ADS 

Google Scholar
 

Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

Article 
ADS 

Google Scholar
 

Kang, K. et al. Double quantum spin hall phase in moiré WSe2. Nano Lett. 24, 14901–14907 (2024).

Article 
ADS 

Google Scholar
 

Coleman, P. Heavy Fermions: Electrons at the Edge of Magnetism (Wiley, 2007).

König, M. Spin-Related Transport Phenomena in HgTe-based Quantum Well Structures. PhD thesis, Universität Würzburg (2007).

Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585 (1981).

Article 
ADS 

Google Scholar
 

Kane, C. & Fisher, M. P. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220 (1992).

Article 
ADS 

Google Scholar
 

Li, T., Wang, P., Sullivan, G., Lin, X. & Du, R.-R. Low-temperature conductivity of weakly interacting quantum spin Hall edges in strained-layer InAs/GaInSb. Phys. Rev. B 96, 241406 (2017).

Article 
ADS 

Google Scholar
 

Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

Article 
ADS 

Google Scholar
 

Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

Article 
ADS 

Google Scholar
 

Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

Article 
ADS 

Google Scholar
 

Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

Article 
ADS 

Google Scholar
 

Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

Article 
ADS 

Google Scholar
 

Ashoori, R. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088 (1992).

Article 
ADS 

Google Scholar
 

Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

Article 
ADS 

Google Scholar
 

Pavarini, E., Coleman, P. & Koch, E. Many-Body Physics: From Kondo to Hubbard. Report No. 3958060749 (Theoretische Nanoelektronik, 2015).

Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).

Article 
ADS 

Google Scholar