Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

Article 
PubMed 

Google Scholar
 

Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Imachi, H. et al. Eukaryotes’ closest relatives are internally simple syntrophic archaea. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640444 (2025).

Zhang, J. et al. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 642, 990–998 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).

Article 
PubMed 

Google Scholar
 

Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muñoz-Gómez, S. A. Energetics and evolution of anaerobic microbial eukaryotes. Nat. Microbiol. 8, 197–203 (2023).

Article 
PubMed 

Google Scholar
 

Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Li, M. et al. Active bacterial and archaeal communities in coastal sediments: Biogeography pattern, assembly process and co-occurrence relationship. Sci. Total Environ. 750, 142252 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Guo, X., Li, Y., Song, G., Zhao, L. & Wang, J. Adaptation of Archaeal communities to summer hypoxia in the sediment of Bohai Sea. Ecol. Evol. 15, e70768 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gong, X. et al. New globally distributed bacterial phyla within the FCB superphylum. Nat. Commun. 13, 7516 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 16, 307–320 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gong, X. et al. Contrasting archaeal and bacterial community assembly processes and the importance of rare taxa along a depth gradient in shallow coastal sediments. Sci. Total Environ. 852, 158411 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Köstlbacher, S. et al. Prediction of eukaryotic cellular complexity in Asgard archaea using structural modelling. Nat. Microbiol. https://doi.org/10.1038/s41564-026-02273-y (2026).

Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).

Article 
PubMed 

Google Scholar
 

Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodriguez-R, L. M., Tsementzi, D., Luo, C. & Konstantinidis, K. T. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ. Microbiol. 22, 3394–3412 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. 14, 1435–1450 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 11, 11316 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barnum, T. P. et al. Predicting microbial growth conditions from amino acid composition. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586313 (2024).

Gawryluk, R. M. R. & Stairs, C. W. Diversity of electron transport chains in anaerobic protists. Biochim. Biophys. Acta, Bioenerg. 1862, 148334 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Geiger, O., Sanchez-Flores, A., Padilla-Gomez, J. & Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 9, eadh0066 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

Article 
PubMed 

Google Scholar
 

Woodcroft, B. J. et al. Comprehensive taxonomic identification of microbial species in metagenomic data using SingleM and Sandpiper. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02738-1 (2025).

Article 
PubMed 

Google Scholar
 

Yu, H., Schut, G. J., Haja, D. K., Adams, M. W. W. & Li, H. Evolution of complex I-like respiratory complexes. J. Biol. Chem. 296, 100740 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357–3372.e19 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat. Commun. 15, 6384 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, H. et al. Structure of an ancient respiratory system. Cell 173, 1636–1649.e16 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kravchuk, V. et al. A universal coupling mechanism of respiratory complex I. Nature 609, 808–814 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chadwick, G. L., Hemp, J., Fischer, W. W. & Orphan, V. J. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 12, 2668–2680 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Banci, L., Bertini, I., Cavallaro, G. & Rosato, A. The functions of Sco proteins from genome-based analysis. J. Proteome Res. 6, 1568–1579 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Gribaldo, S., Talla, E. & Brochier-Armanet, C. Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem. Sci. 34, 375–381 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Alcott, L. J., Mills, B. J. W., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Canfield, D. E. Carbon cycle evolution before and after the Great Oxidation of the atmosphere. Am. J. Sci. 321, 297–331 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Riedman, L. A., Porter, S. M., Lechte, M. A., dos Santos, A. & Halverson, G. P. Early eukaryotic microfossils of the late Palaeoproterozoic Limbunya Group, Birrindudu Basin, northern Australia. Pap. Palaeontol. 9, e1538 (2023).

Article 

Google Scholar
 

Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Martin, W. F. et al. Late Mitochondrial Origin Is an Artifact. Genome Biol. Evol. 9, 373–379 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ettema, T. J. G. Evolution: mitochondria in the second act. Nature 531, 39–40 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Agić, H. in Prebiotic Chemistry and the Origin of Life (eds Neubeck, A. & McMahon, S.) 255–289 (Springer, 2021).

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv https://doi.org/10.1101/059121 (2016).

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hugoson, E., Lam, W. T. & Guy, L. miComplete: weighted quality evaluation of assembled microbial genomes. Bioinformatics 36, 936–937 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, gix096 (2017).

Article 

Google Scholar
 

Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aroney, S. T. N. et al. CoverM: read alignment statics for metagenomics. Bioinformatics 41, btaf147 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

Article 
CAS 

Google Scholar
 

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Hernández-Plaza, A. et al. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res. 51, D389–D394 (2023).

Article 
PubMed 

Google Scholar
 

Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 39, D38–D51 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Parks, D. H. et al. Author Correction: recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 3, 253 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Schäffer, A. A. et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29, 2994–3005 (2001).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Petitjean, C., Deschamps, P., López-García, P., Moreira, D. & Brochier-Armanet, C. Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life. Mol. Biol. Evol. 32, 1242–1254 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Deorowicz, S., Debudaj-Grabysz, A. & Gudyś, A. FAMSA: fast and accurate multiple sequence alignment of huge protein families. Sci. Rep. 6, 33964 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Minh, B. Q. et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 2461 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Steenwyk, J. L. et al. BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics 221, iyac079 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Richter, D. J. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Commun. J. 2, e56 (2022).

Article 

Google Scholar
 

Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Dong, R., Peng, Z., Zhang, Y. & Yang, J. mTM-align: an algorithm for fast and accurate multiple protein structure alignment. Bioinformatics 34, 1719–1725 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Appler, K. E. et al. Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor. Figshare https://figshare.com/s/f139faeb05653d1adf6b (2026).