Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Hartung, L., Seubert, M., Welte, S., Distante, E. & Rempe, G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 385, 179–183 (2024).
Saha, S. et al. High-fidelity remote entanglement of trapped atoms mediated by time-bin photons. Nat. Commun. 16, 2533 (2025).
Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).
Esmann, M., Wein, S. C. & Antón-Solanas, C. Solid-state single-photon sources: recent advances for novel quantum materials. Adv. Funct. Mater. 34, 2315936 (2024).
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Luo, W. et al. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12, 175 (2023).
Couteau, C. et al. Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326–338 (2023).
Zhang, J. et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv. 8, eabq4240 (2022).
Rahmouni, A. et al. Entangled photon pair generation in an integrated SiC platform. Light Sci. Appl. 13, 110 (2024).
Finco, G. et al. Time-bin entangled Bell state generation and tomography on thin-film lithium niobate. npj Quantum Inf. 10, 135 (2024).
Chen, Y. et al. Integrated quantum nanophotonics with solution-processed materials. Adv. Quantum Technol. 5, 2100078 (2022).
Lukin, D. M., Guidry, M. A. & Vučković, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1, 020102 (2020).
Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).
Shandilya, P. K. et al. Diamond integrated quantum nanophotonics: spins, photons and phonons. J. Lightw. Technol. 40, 7538–7571 (2022).
Hepp, S., Jetter, M., Portalupi, S. L. & Michler, P. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol. 2, 1900020 (2019).
Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13, 7693 (2022).
Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Senichev, A. et al. Silicon nitride waveguides with intrinsic single-photon emitters for integrated quantum photonics. ACS Photon. 9, 3357–3365 (2022).
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).
Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. 13, 011005 (2023).
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2023).
Yong, Z. et al. Power-efficient silicon nitride thermo-optic phase shifters for visible light. Opt. Express 30, 7225–7237 (2022).
González-Andrade, D. et al. Ultra-broadband nanophotonic phase shifter based on subwavelength metamaterial waveguides. Photon. Res. 8, 359–367 (2020).
Chakraborty, C. et al. Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor. Optica 7, 580–585 (2020).
Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).
Nikolay, N. et al. Very large and reversible stark-shift tuning of single emitters in layered hexagonal boron nitride. Phys. Rev. Appl. 11, 041001 (2019).
Yang, J. et al. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources. Light Sci. Appl. 13, 33 (2024).
Moczała-Dusanowska, M. et al. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photon. 7, 3474–3480 (2020).
Buzzi, A. et al. Spectral tuning and nanoscale localization of single color centers in silicon via controllable strain. Nat. Commun. 16, 8829 (2025).
Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).
Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).
Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photon. 8, 1069–1076 (2021).
Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).
Fournier, C. et al. Two-photon interference from a quantum emitter in hexagonal boron nitride. Phys. Rev. Appl. 19, L041003 (2023).
Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).
Sortino, L. et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).
Montblanch, A. R. P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).
Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).
Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Phys. Rev. 9, 031022 (2019).
Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655.
Chatterjee, S. et al. Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer. Nat. Commun. 14, 4679 (2023).
Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).
Pelliciari, J. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. 23, 1230–1236 (2024).
Tan, Q. et al. Donor–acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).
Liang, H. et al. Tunable polarization entangled photon-pair source in rhombohedral boron nitride. Sci. Adv. 11, eadt3710 (2025).
Lyu, X. et al. A tunable entangled photon-pair source based on a van der Waals insulator. Nat. Commun. 16, 1899 (2025).
Qi, J. et al. Stacking-controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%. Adv. Mater. 36, 2303122 (2024).
Weissflog, M. A. et al. A tunable transition metal dichalcogenide entangled photon-pair source. Nat. Commun. 15, 7600 (2024).
Ma, C. et al. Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes. Nat. Nanotechnol. 19, 1299–1305 (2024).
Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).
Trovatello, C. et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photon. 19, 291–299 (2025).
Wang, H. et al. Quantum coherence and interference of a single moiré exciton in nano-fabricated twisted monolayer semiconductor heterobilayers. Nat. Commun. 15, 4905 (2024).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).
He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11, 205 (2022).
Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).
Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).
Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).
Liu, Y. et al. Integrated vortex soliton microcombs. Nat. Photon. 18, 632–637 (2024).
He, Y. et al. All-optical signal processing in structured light multiplexing with dielectric meta-optics. ACS Photon. 7, 135–146 (2020).
Bütow, J., Sharma, V., Brandmüller, D., Eismann, J. S. & Banzer, P. Photonic integrated processor for structured light detection and distinction. Commun. Phys. 6, 369 (2023).
Liu, X. et al. On-chip generation of single-photon circularly polarized single-mode vortex beams. Sci. Adv. 9, eadh0725 (2023).
Wu, C. et al. Room-temperature on-chip orbital angular momentum single-photon sources. 8, eabk3075 (2022).
Zhang, D., Zhai, D., Deng, S., Yao, W. & Zhu, Q. Single photon emitters with polarization and orbital angular momentum locking in monolayer semiconductors. Nano Lett. 23, 3851–3857 (2023).
Liu, X. et al. Ultracompact single-photon sources of linearly polarized vortex beams. Adv. Mater. 36, 2304495 (2024).
Kan, Y. et al. Ångström-tunable polarization-resolved solid-state photon sources. Nat. Photon. 19, 960–967 (2025).
Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).
Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).
Huang, J. et al. Integrated optical entangled quantum vortex emitters. Nat. Photon. 19, 471–478 (2025).
Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).
Warner, H. K., Zhao, Y., Zhang, Y., Zhang, M. & Lončar, M. DC-stable thin-film lithium niobate modulator at liquid nitrogen temperatures. Opt. Lett. 50, 5398–5401 (2025).
Saxena, A., Manna, A., Trivedi, R. & Majumdar, A. Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays. Nat. Commun. 14, 5260 (2023).
Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).
Wang, C. et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature 629, 784–790 (2024).
Wang, C. et al. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica 11, 1614–1620 (2024).
Eppenberger, M. et al. Resonant plasmonic micro-racetrack modulators with high bandwidth and high temperature tolerance. Nat. Photon. 17, 360–367 (2023).
Van Iseghem, L. et al. Low power optical phase shifter using liquid crystal actuation on a silicon photonics platform. Opt. Mater. Express 12, 2181–2198 (2022).
Kim, D. U. et al. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photon. 17, 1089–1096 (2023).
Chen, R. et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photon. 9, 3181–3195 (2022).
Zhao, M. E. A. An integrated photonics platform for high-speed, ultrahigh-extinction, many-channel quantum control. Preprint at https://arxiv.org/abs/2508.09920v1 (2025).
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).
Hönl, S. et al. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun. 13, 2065 (2022).
Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166–172 (2024).
Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Quantum-enabled microwave-to-optical transduction via silicon nanomechanics. Nat. Nanotechnol. 20, 602–608 (2025).
van Thiel, T. C. et al. Optical readout of a superconducting qubit using a piezo-optomechanical transducer. Nat. Phys. 21, 401–405 (2025).
Rochman, J., Xie, T., Bartholomew, J. G., Schwab, K. C. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1153 (2023).
Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at the single-photon level with spins. Nat. Phys. 21, 931–937 (2025).
Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. 17, 112–119 (2023).
Stasi, L. et al. Fast high-efficiency photon-number-resolving parallel superconducting nanowire single-photon detector. Phys. Rev. Appl. 19, 064041 (2023).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).
Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).
Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).
Chen, S. et al. Heralded three-photon entanglement from a single-photon source on a photonic chip. Phys. Rev. Lett. 132, 130603 (2024).
Cao, H. et al. Photonic source of heralded Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 132, 130604 (2024).
Nielsen, K. H. et al. Programmable nonlinear quantum photonic circuits. Preprint at https://arxiv.org/abs/2405.17941 (2024).
Uppu, R. et al. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nat. Commun. 11, 3782 (2020).
Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).
Yanagimoto, R. et al. Programmable on-chip nonlinear photonics. Nature https://doi.org/10.1038/s41586-025-09620-9 (2025).
Dutt, A., Mohanty, A., Gaeta, A. L. & Lipson, M. Nonlinear and quantum photonics using integrated optical materials. Nat. Rev. Mater. 9, 321–346 (2024).
Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).
Kögl, M. et al. Moiré straintronics: a universal platform for reconfigurable quantum materials. npj 2D Mater. Appl. 7, 32 (2023).
Wu, T., Li, Y., Ge, L. & Feng, L. Field-programmable photonic nonlinearity. Nat. Photon. 19, 725–732 (2025).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Vernuccio, F. et al. Artificial intelligence in classical and quantum photonics. Laser Photon. Rev. 16, 2100399 (2022).
He, L. et al. Super-compact universal quantum logic gates with inverse-designed elements. Sci. Adv. 9, eadg6685 (2023).