Lisowska-Lysiak K, Lauterbach R, Miedzobrodski J, Kosecka-Strojek M. Epidemiology and pathogenesis of Staphylococcus bloodstream infections in humans: a review. Pol J Microbiol. 2021;70(1):13–23. https://doi.org/10.33073/pjm-2021-005.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heilmann C, Ziebuhr W, Becker K. Are coagulase-negative Staphylococci virulent? Clin Microbiol Infect. 2019;25(9):1071–80. https://doi.org/10.1016/j.cmi.2018.11.012.

Article 
CAS 
PubMed 

Google Scholar
 

Naber CK. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis. 2009;48(Supplement4):S231–7. https://doi.org/10.1086/598189.

Article 
PubMed 

Google Scholar
 

Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61. https://doi.org/10.1128/cmr.00134-14.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pain M, Wolden R, Jaén-Luchoro D, et al. Staphylococcus borealis sp. nov., isolated from human skin and blood. Int J Syst Evol Microbiol. 2020;70(12):6067–78. https://doi.org/10.1099/ijsem.0.004499.

Article 
CAS 
PubMed 

Google Scholar
 

Król J, Wanecka A, Twardoń J, et al. Staphylococcus borealis – a newly identified pathogen of bovine mammary glands. Vet Microbiol. 2023;286:109876. https://doi.org/10.1016/j.vetmic.2023.109876.

Article 
CAS 
PubMed 

Google Scholar
 

Cavanagh JP, Klingenberg C, Venter HJ et al. Revealing the clinical relevance of Staphylococcus borealis. Microbiol Spectr 13(4):e01988–24. https://doi.org/10.1128/spectrum.01988-24

Bruynoghe R, Maisin J. Essais de thérapeutique au moyen du bacteriophage – ScienceOpen. Accessed August 8, 2024. https://www.scienceopen.com/document?vid=f9178fff-aba9-440f-a4dd-1316136e86a7

Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59. https://doi.org/10.1128/AAC.45.3.649-659.2001.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Almeida GM, de Sundberg F. The forgotten Tale of Brazilian phage therapy. Lancet Infect Dis. 2020;20(5):e90–101. https://doi.org/10.1016/S1473-3099(20)30060-8.

Article 
CAS 
PubMed 

Google Scholar
 

Göller PC, Elsener T, Lorgé D, et al. Multi-species host range of Staphylococcal phages isolated from wastewater. Nat Commun. 2021;12(1):6965. https://doi.org/10.1038/s41467-021-27037-6.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Plumet L, Ahmad-Mansour N, Dunyach-Remy C, et al. Bacteriophage therapy for Staphylococcus aureus infections: a review of animal models, treatments, and clinical trials. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.907314.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pirnay JP, Djebara S, Steurs G, et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol. 2024;9(6):1434–53. https://doi.org/10.1038/s41564-024-01705-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alsaadi SE, Lu H, Zhang M, Dykes GF, Allison HE, Horsburgh MJ. Bacteriophages from human skin infecting coagulase-negative staphylococcus: diversity, novelty and host resistance. Sci Rep. 2024;14(1):8245. https://doi.org/10.1038/s41598-024-59065-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lopes MS, Silva MD, Azeredo J, Melo LDR. Coagulase-negative staphylococci phages panorama: genomic diversity and in vitro studies for a therapeutic use. Microbiol Res. 2025;290:127944. https://doi.org/10.1016/j.micres.2024.127944.

Article 
CAS 
PubMed 

Google Scholar
 

Merabishvili M, Pirnay JP, Verbeken G, et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE. 2009;4(3):e4944. https://doi.org/10.1371/journal.pone.0004944.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sharifi F, Montaseri M, Yousefi MH, et al. Isolation and characterization of two Staphylococcus aureus lytic bacteriophages Huma and Simurgh. Virology. 2024;595:110090. https://doi.org/10.1016/j.virol.2024.110090.

Article 
CAS 
PubMed 

Google Scholar
 

Vandersteegen K, Mattheus W, Ceyssens PJ, et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE. 2011;6(9):e24418. https://doi.org/10.1371/journal.pone.0024418.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wishart DS, Han S, Saha S, et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51(W1):W443–50. https://doi.org/10.1093/nar/gkad382.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Payne LJ, Meaden S, Mestre MR, et al. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res. 2022;50(W1):W541–50. https://doi.org/10.1093/nar/gkac400.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Daniel A, Bonnen PE, Fischetti VA. First complete genome sequence of two Staphylococcus epidermidis bacteriophages. J Bacteriol. 2007;189(5):2086–100. https://doi.org/10.1128/JB.01637-06.

Article 
CAS 
PubMed 

Google Scholar
 

Zeman M, Bárdy P, Vrbovská V, et al. New genus fibralongavirus in siphoviridae phages of Staphylococcus Pseudintermedius. Viruses. 2019;11(12):1143. https://doi.org/10.3390/v11121143.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naghavi M, Vollset SE, Ikuta KS, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024. https://doi.org/10.1016/S0140-6736(24)01867-1.

Article 

Google Scholar
 

Ngassam-Tchamba C, Duprez JN, Fergestad M, et al. In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. J Glob Antimicrob Resist. 2020;22:762–70. https://doi.org/10.1016/j.jgar.2020.06.020.

Article 
CAS 
PubMed 

Google Scholar
 

Kwan T, Liu J, DuBow M, Gros P, Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A. 2005;102(14):5174–9. https://doi.org/10.1073/pnas.0501140102.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Merabishvili M, Vervaet C, Pirnay JP, et al. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLoS ONE. 2013;8(7):e68797. https://doi.org/10.1371/journal.pone.0068797.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vandersteegen K, Kropinski AM, Nash JHE, Noben JP, Hermans K, Lavigne R. Romulus and Remus, two phage isolates representing a distinct clade within the twortlikevirus genus, display suitable properties for phage therapy applications. J Virol. 2013;87(6):3237–47. https://doi.org/10.1128/jvi.02763-12.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Verheul M, Mulder AA, van Dun SCJ, et al. Bacteriophage ISP eliminates Staphylococcus aureus in planktonic phase, but not in the various stages of the biofilm cycle. Sci Rep. 2024;14(1):14374. https://doi.org/10.1038/s41598-024-65143-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. Potential of the polyvalent Anti-Staphylococcus bacteriophage K for control of Antibiotic-Resistant Staphylococci from hospitals. Appl Environ Microbiol. 2005;71(4):1836–42. https://doi.org/10.1128/AEM.71.4.1836-1842.2005.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Łubowska N, Grygorcewicz B, Kosznik-Kwaśnicka K, et al. Characterization of the three new kayviruses and their lytic activity against multidrug-resistant Staphylococcus aureus. Microorganisms. 2019;7(10):471. https://doi.org/10.3390/microorganisms7100471.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Götz F, Popp F, Schleifer KH. Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol Lett. 1984;23(2–3):303–7. https://doi.org/10.1111/j.1574-6968.1984.tb01083.x.

Article 

Google Scholar
 

Benešík M, Nováček J, Janda L, et al. Role of SH3b binding domain in a natural deletion mutant of kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes. 2018;54(1):130–9. https://doi.org/10.1007/s11262-017-1507-2.

Article 
CAS 
PubMed 

Google Scholar
 

Oduor JMO, Kadija E, Nyachieo A, Mureithi MW, Skurnik M. Bioprospecting Staphylococcus phages with therapeutic and bio-control potential. Viruses. 2020;12(2):133. https://doi.org/10.3390/v12020133.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kolenda C, Bonhomme M, Medina M, et al. Potential of training of anti-Staphylococcus aureus therapeutic phages against Staphylococcus epidermidis multidrug-resistant isolates is restricted by inter- and intra-sequence type specificity. mSystems. 2024;9(10):e00850–24. https://doi.org/10.1128/msystems.00850-24.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species Staphylococcal biofilms. Appl Environ Microbiol. 2015;81(10):3336–48. https://doi.org/10.1128/AEM.03560-14.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meaden S, Westra E, Fineran P. Phage defence system abundances vary across environments and increase with viral density. Published online January 16, 2025:2025.01.16.633327. https://doi.org/10.1101/2025.01.16.633327

Burke KA, Urick CD, Mzhavia N, Nikolich MP, Filippov AA. Correlation of Pseudomonas aeruginosa phage resistance with the numbers and types of antiphage systems. Int J Mol Sci. 2024;25(3):1424. https://doi.org/10.3390/ijms25031424.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaborieau B, Vaysset H, Tesson F, et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. Nat Microbiol. 2024;9(11):2847–61. https://doi.org/10.1038/s41564-024-01832-5.

Article 
CAS 
PubMed 

Google Scholar
 

Moller AG, Winston K, Ji S, et al. Genes influencing phage host range in Staphylococcus aureus on a species-wide scale. mSphere. 2021;6(1):e01263-20. https://doi.org/10.1128/mSphere.01263-20.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moller AG, Lindsay JA, Read TD. Determinants of Phage Host Range in Staphylococcus Species. Appl Environ Microbiol., Walsh SK, Imrie RM, Matuszewska M et al. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLOS Pathogens. 2023;19(6):e1011433. doi:10.1371/journal.ppat.1011433.

Botka T, Pantůček R, Mašlaňová I, et al. Lytic and genomic properties of spontaneous host-range kayvirus mutants prove their suitability for upgrading phage therapeutics against Staphylococci. Sci Rep. 2019;9(1):5475. https://doi.org/10.1038/s41598-019-41868-w.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar